Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Journal Article

Simulation of Organic Rankine Cycle Power Generation with Exhaust Heat Recovery from a 15 liter Diesel Engine

2015-04-14
2015-01-0339
The performance of an organic Rankine cycle (ORC) that recovers heat from the exhaust of a heavy-duty diesel engine was simulated. The work was an extension of a prior study that simulated the performance of an experimental ORC system developed and tested at Oak Ridge National laboratory (ORNL). The experimental data were used to set model parameters and validate the results of that simulation. For the current study the model was adapted to consider a 15 liter turbocharged engine versus the original 1.9 liter light-duty automotive turbodiesel studied by ORNL. Exhaust flow rate and temperature data for the heavy-duty engine were obtained from Southwest Research Institute (SwRI) for a range of steady-state engine speeds and loads without EGR. Because of the considerably higher exhaust gas flow rates of the heavy-duty engine, relative to the engine tested by ORNL, a different heat exchanger type was considered in order to keep exhaust pressure drop within practical bounds.
Technical Paper

Development of a New 13L Heavy-Duty Diesel Engine Using Analysis-Led Design

2008-06-23
2008-01-1515
The paper covers the design and development of a new 13L heavy-duty diesel engine intended primarily for heavy truck applications in China. It provides information on the specific characteristics of the engine that make it particularly suitable for operation in China, and describes in detail some of the design techniques that were used. To meet these exacting requirements, extensive use was made of Analysis-Led Design, which allows components, sub-systems and the entire engine, aftertreatment and vehicle system to be modeled before designs are taken to prototype hardware. This enables a level of system and sub-system optimization not previously available. The paper describes the emissions strategy for China, and the physical design strategy for the new engine, and provides some engine performance robustness details. The engine architecture is discussed and the paper details the analysis of the major components - cylinder block, head, head seal, power cylinder and bearings.
Technical Paper

System Level RBDO for Military Ground Vehicles using High Performance Computing

2008-04-14
2008-01-0543
The Army continues to improve its Reliability-based Design Optimization (RBDO) process, expanding from component optimization to system optimization. We are using the massively parallel computing power of the Department of Defense (DoD) High Performance Computing (HPC) systems to simultaneously optimize multiple components which interact with each other in a mechanical system. Specifically, we have a subsystem of a military ground vehicle, consisting of more than four components and are simultaneously optimizing five components of that subsystem using RBDO methods. We do not simply optimize one component at a time, sequentially, and iterate until convergence. We actually simultaneously optimize all components together. This can be done efficiently using the parallel computing environment. We will discuss the results of this optimization, and the advantages and disadvantages of using HPC systems for this work.
Technical Paper

The Optimization of MOP Control Strategy for a Range-Extended Electric Vehicle Based on GA

2017-10-08
2017-01-2464
The range-extended electric vehicle (REEV) is a complex nonlinear system powered by internal combustion engine and electricity stored in battery. This research proposed a Multiple Operation Points (MOP) control strategy of REVV based on operation features of REEV and the universal characteristic curve of the engine. The switching logic rules of MOP strategy are designed for the desired transition of the operation mode, which makes the engine running at high efficiency region. A Genetic algorithm (GA) is adapted to search the optimal solution. The fuel consumption is defined as the target cost function. The demand power of engine is defined as optimal variable. The state of charge (SOC) and vehicle speed are selected as the state variables. The dynamic performance of vehicle and cycling life of battery is set as the constraints. The optimal switching parameters are obtained based on this control strategy. Finally, a dynamic simulation model of REEV is developed in Matlab/Simulink.
Technical Paper

High-Performance Grid Computing for Cummins Vehicle Mission Simulation: Architecture and Applications

2011-09-13
2011-01-2268
This paper presents an extension of our earlier work on Cummins Vehicle Mission Simulation (VMS) software. Previously, we presented VMS as a Windows based analysis tool to simulate vehicle missions quickly and to gauge, communicate, and improve the value proposition of Cummins engines to customers. We have subsequently extended this VMS architecture to build a grid-computing platform to support high volume of simulation needs. The building block of the grid-computing version of VMS is an executable file that consists of vehicle and engine simulation models compiled using Real Time Workshop. This executable file integrates MATLAB and Simulink with Java, XML, and JDBC technologies and interacts with the MySQL database. Our grid consists of a cluster of twenty Linux servers with quad-core processors. The Sun Grid Engine software suite that administers this cluster can batch-queue and execute 80 simulations concurrently.
Technical Paper

Durability Test Suite Optimization Based on Physics of Failure

2018-04-03
2018-01-0792
Dynamometer (dyno) durability testing plays a significant role in reliability and durability assessment of commercial engines. Frequently, durability test procedures are based on warranty history and corresponding component failure modes. Evolution of engine designs, operating conditions, electronic control features, and diagnostic limits have created challenges to historical-based testing approaches. A physics-based methodology, known as Load Matrix, is described to counteract these challenges. The technique, developed by AVL, is based on damage factor models for subsystem and component failure modes (e.g. fatigue, wear, degradation, deposits) and knowledge of customer duty cycles. By correlating dyno test to field conditions in quantifiable terms, such as customer equivalent miles, more effective and efficient durability test suites and test procedures can be utilized. To this end, application of Load Matrix to a heavy-duty diesel engine is presented.
Technical Paper

Simulation of a Continuously Variable Power Split Transmission

1999-03-01
1999-01-0062
Continuously variable transmissions promise to improve the performance and drivability of vehicles. The design and implementation of continuously variable transmissions for medium or large displacement (power) engines have been hampered by the power limitations of the belts. A continuously variable transmission with a power split design (CVPST) has been developed to minimize the loading on the belt while providing for increased power transfer compared to existing designs. To aid in the design and development of this CVPST, a simulator program has been developed. The simulator can be used to optimize the CVPST and to compare with other transmissions. Finally, an optimized CVPST design is presented.
Technical Paper

Multi-Domain Optimization for Fuel Economy Improvement of HD Trucks

2019-04-02
2019-01-0312
Fuel usage negatively impacts the environment and is a significant portion of operational costs of moving freight globally. Reducing fuel consumption is key to lessening environmental impacts and maximizing freight efficiency, thereby increasing the profit margin of logistic operators. In this paper, fuel economy improvements of a cab-over style 49T heavy duty Foton truck powered by a Cummins 12-liter engine are studied and systematically applied for the China market. Most fuel efficiency improvements are found within the vehicle design when compared to opportunities available at the engine level. Vehicle design (improved aerodynamics), component selection/matching (low rolling resistance tires), and powertrain electronic features integration (shift schedule/electronic trim) offer the largest opportunities for lowering fuel consumption.
Technical Paper

Recommendation of Experimental Setup and use of Standardized Electrohydrodynamic Dimensionless Parameters for Optimization of a Dielectric Barrier Discharge Flow Control Device

2014-09-16
2014-01-2101
The high demand for traditional air traffic as well as increased use of unmanned aerial systems (UAS) has resulted in researchers examining alternative technologies which would result in safer, more reliable, and better performing aircraft. Active methods of aerodynamic flow control may be the most promising approach to this problem. Research in the area of aerodynamic control is transitioning from traditional mechanical flow control devices to, among other methods, plasma actuators. Plasma actuators offer an inexpensive and energy efficient method of flow control. Dielectric Barrier Discharge (DBD), one of the most widely studied forms of plasma actuation, employs an electrohydrodynamic (EHD) device which uses dominant electric fields for actuation. Unlike traditional flow control methods, a DBD device operates without moving components or mass injection methods.
Technical Paper

Some Developments in DES Modeling for Engine Flow Simulation

2015-09-06
2015-24-2414
Scale-resolving turbulence modeling for engine flow simulation has constantly increased its popularity in the last decade. In contrast to classical RANS modeling, LES-like approaches are able to resolve a larger number of unsteady flow features. In principle, this capability allows to accurately predict some of the key parameters involved in the development and optimization of modern engines such as cycle-to-cycle variations in a DI engine. However, since multiple simulated engine cycles are required to extract reliable flow statistics, the spatial and temporal resolution requirements of pure LES still represent a severe limit for its wider application on realistic engine geometries. In this context, Hybrid URANS-LES methodologies can therefore become a potentially attractive option. In fact, their task is to preserve the turbulence scale-resolving in the flow core regions but at a significantly lower computational cost compared to standard LES.
Technical Paper

Analytical Evaluation of Integrated Drivetrain NVH Phenomena

2015-09-29
2015-01-2781
This paper demonstrates the use of a system level model that includes torsional models of a Cummins diesel engine and an Allison transmission to study and improve system NVH behavior. The study is a case where the two suppliers of key powertrain components, Cummins Inc. and Allison Transmission Inc., have collaborated to solve an observed NVH problem for a vehicle customer. A common commercial tool, Siemens' AMESim, was used to develop the drivetrain torsional system model. This paper describes a method of modelling and calibration of baseline engine and transmission models to identify the source of vibration. Natural frequencies, modal shapes, and forced response were calculated for each vehicle drive gear ratio to study the torsional vibration. Several parametric studies such as damping, inertia, and stiffness were carried out to understand their impact on torsional vibration of the system.
Journal Article

Model-Based Approaches in Developing an Advanced Aftertreatment System: An Overview

2019-01-15
2019-01-0026
Cummins has recently launched next-generation aftertreatment technology, the Single ModuleTM aftertreatment system, for medium-duty and heavy-duty engines used in on-highway and off-highway applications. Besides meeting EPA 2010+ and Euro VI regulations, the Single ModuleTM aftertreatment system offers 60% volume and 40% weight reductions compared to current aftertreatment systems. In this work, we present model-based approaches that were systematically adopted in the design and development of the Cummins Single ModuleTM aftertreatment system. Particularly, a variety of analytical and experimental component-level and system-level validation tools have been used to optimize DOC, DPF, SCR/ASC, as well as the DEF decomposition device.
Journal Article

Feasibility of Multiple Piston Motion Control Approaches in a Free Piston Engine Generator

2019-10-22
2019-01-2599
The control and design optimization of a Free Piston Engine Generator (FPEG) has been found to be difficult as each independent variable changes the piston dynamics with respect to time. These dynamics, in turn, alter the generator and engine response to other governing variables. As a result, the FPEG system requires an energy balance control algorithm such that the cumulative energy delivered by the engine is equal to the cumulative energy taken by the generator for stable operation. The main objective of this control algorithm is to match the power generated by the engine to the power demanded by the generator. In a conventional crankshaft engine, this energy balance control is similar to the use of a governor and a flywheel to control the rotational speed. In general, if the generator consumes more energy in a cycle than the engine provides, the system moves towards a stall.
X