Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Application of High Thermal Conductivity Steels to Automotive Aluminum Die-Cast Molds

2007-04-16
2007-01-1221
In recent years, the use of aluminum die cast parts in automobile manufacturing has increased due to greater demand for automotive weight reduction. For even wider application, it is necessary to reduce manufacturing costs and improve product quality. Finite element method (FEM) analysis suggested that a new material, featuring 50% improved thermal conductivity within the working temperature of the die compared to the conventional 5% chromium hot work tool steel AISI-H13 (H-13), would decrease thermal stress on the die surface and lower the maximum surface temperature. As a result, the reduced stress should increase the die service life with respect to heat checks. At the same time, the reduced surface temperature should increase the cooling rate of die cast products, which will in turn improve product quality due to finer structure formation.
Technical Paper

Research on High Strength Material and Its Surface Modification for Parts Used Under Rolling Contact Cycles

2004-03-08
2004-01-0633
This paper describes a newly developed steel composition and surface modification methods for improving the rolling contact fatigue strength of parts used in transmission systems, especially continuously variable transmissions (CVTs) to increase their torque capacity. The mechanisms of two types of typical rolling contact fatigue phenomenon in case hardening steel were examined with the aim of improving rolling contact fatigue strength. One concerned white etching constituents (WEC) and the other one concerned peculiar microstructural changes caused by hydrogen originating from decomposition of the lubrication oil as a result of repeated rolling contact stress cycles. The rolling contact fatigue strength limit due to WEC has been improved markedly by dispersing fine M23C6 alloy carbides in the martensite matrix at the subsurface layer of parts.
Technical Paper

Development of High-Heat-Resistant High-Nitrogen Containing Austenitic Stainless Steel for Exhaust Gasket

2004-03-08
2004-01-0890
SUS301-EH is widely used as a material for exhaust system gaskets, however, at temperatures in excess of 400°C, it can not be used as gas-seal ability of the material declines due to its reduced hardness. The following methods were found to be effective in controlling the softening of stainless steel at high temperatures: (1) The addition of a nitrogen component; (2) Stabilization of the austenite structure; (3) The addition of a molybdenum component. The addition of 0.5% nitrogen to austenitic stainless steel containing molybdenum has enabled the speed of softening at high temperatures to be significantly reduced, due to strain aging by solid nitrogen below 600°C and the combined effects of precipitation hardening and control of growth of recrystallized grains through the precipitation of fine Cr2N on the dislocations and the grain boundary above 600°C.
Technical Paper

Development of Pitting Resistant Steel for Transmission Gears

2001-03-05
2001-01-0827
It was found that pitting resistance of gears is strongly influenced by resistance to temper softening of carburized steel. The investigation about the influence of chemical compositions on hardness after tempering revealed that silicon, chromium and molybdenum are effective elements to improve resistance to temper softening and pitting resistance. Considering the production of gears, molybdenum is unfavorable because it increases hardness of normalized or annealed condition. Developed new steel contains about 0.5 mass% of silicon and 2.7 mass% chromium. The new steel has excellent pitting resistance and wear resistance. Fatigue and impact strength are equivalent to conventional carburized steels. Cold-formability and machinability of the new steel are adequate for manufacturing gears because of its ordinary hardness before carburizing. The new steel has already been put to practical use in automatic transmission gears. Application test results are also reported.
Technical Paper

Development of the Ferritic Stainless Steel Welding Wire Providing Fine Grain Microstructure Weld Metal for the Components of Automotive Exhaust System

2003-03-03
2003-01-0979
Ferritic stainless steel gas metal arc welding (GMAW) wires have been widely using for automotive exhaust system components made of ferritic stainless steels. In order to enhance the high temperature strength of weld metal, it is necessary to make the microstructure of weld metal finer. In this study, the effect of the chemistry of ferritic stainless steel GMAW wire on the weld metal microstructure was investigated and new ferritic stainless steel GMAW wire providing fine grain microstructure of the weld metal was developed to improve high temperature mechanical properties, oxidation resistance, corrosion resistance of the weld metal and weldabiliy of the wire.
Technical Paper

Development of High Impact Strength Case Hardening Steel

2003-03-03
2003-01-1310
Improving the impact strength of the differential gears is one way to reduce the size and weight of the final drive unit. Previously, we developed high-strength steel for gear use by adding molybdenum and reducing impurities such as phosphorus and sulfur. However, additional improvement of impact strength is required these days due to higher engine torque and demands for further weight reductions. Toward that end, we focused on boron, which has been used as an element for improving hardenability, and analyzed what effect its addition would have on impact strength. Useful knowledge was obtained for improving impact strength through enhancement of grain boundary toughness. Various steels were then produced experimentally and used in gear strength tests. The results made it possible to improve impact strength while reducing the content of other alloys, resulting in the development of a chromium-molybdenum-boron case hardening steel with superior cold forgeabilty.
Technical Paper

Application of Hard Shot Peening to Automotive Transmission Gears

1992-02-01
920760
Although shot peening is an old technology, it has been revived in the Japanese automotive industry as a means to enhance the fatigue durability of steel components. Particular emphasis is on the application of “hard shot peening”. “Hard shot peening” is a high intensity peening technology which results in a higher magnitude of compressive residual stress and, therefore, greater fatigue resistance than conventional shot peening. The first area of development was in high performance carburizing steels suitable for hard shot peening. Desirable traits were enhanced by reducing the carburizing anomalies resulting from intergranular oxidation and by the enhancing case toughness. Further improvement of fatigue resistance has been accomplished by dual peening, first with hard shot followed by smaller diameter steel shot at a lower intensity. This paper also describes the development of long life shot media for hard shot peening.
Technical Paper

Improvement in Pitting Resistance of Transmission Gears by Plasma Carburizing Process

1994-03-01
940727
The application of both high strength gear steels and shot peening technology has succeeded in strengthening automotive transmission gears. This technology, though, improves mainly the fatigue strength at the tooth root, but not the pitting property at the tooth face. Therefore, demand has moved to the development of new gear steels with good pitting resistance. In order to improve pitting resistance, the authors studied super carburizing which is characterized by carbide dispersion in the case, especially processed with a plasma carburizing furnace. Firstly, the influence of the carburizing temperature and carburizing period on the carbide morphology was investigated and the optimum carburizing conditions were determined. Secondly, the fatigue strength and pitting resistance was evaluated using carbide dispersed specimens.
Technical Paper

Development of Ultra Fine Grain Steel for Carburizing

1995-02-01
950209
The cold forging process is one of the most popular in the manufacture the automotive parts such as gears and shafts, cold forging saves material and machining costs by near-net shape the principle of forming. However, abnormal austenite grain growth sometimes occurs when the cold forged parts are heated for surface carburizing without a prior normalizing process. The size of the coarse grains can be large, sometimes ASTM Grain Size Number -2 to -4. The abnormal grain growth may cause post-carburizing distortion and is harmful to both fracture toughness and fatigue strength of the parts [1]. The purpose of our research was to develope new steels which would keep the fine grains during the carburizing treatment without normalizing. First, we studied the influence of elements on the grain growth property of case hardening steels and Naiobum (Nb) was selected as the element to control the grain growth. Secondly, we developed an ultra fine grain steel containing a small amount of Nb.
Technical Paper

Development of Case Hardening Steel for Cold Forging without Spheroidizing

1996-02-01
960315
Based on fundamental research about the influence of chemical composition on rolled bar hardness, hardenability, case hardenability, cold formability, and mechanical properties, a new case hardening steel has been developed which can be cold forged without spheroidizing annealing. The steel contains boron and the Si and Mn contents are less than conventional steels. The steel shows fatigue strength equivalent to the conventional steels and better toughness and machinability.
Technical Paper

Development of a High-Performance TiA1 Exhaust Valve

1996-02-01
960303
A new high-performance and lightweight TiA1 intermetallic compound exhaust valve has been developed. The TiA1 valve can improve power output and fuel economy by contributing higher engine speeds and a reduction in valvetrain friction. It was achieved by developing a Ti-33.5A1-0.5Si-1Nb-0.5Cr (mass%) intermetallic compound, a precision casting method for TiA1 that provides a low-cost, high-quality process, and a plasma carburizing technique for assuring good wear resistance on the valve stem end, stem and face.
Technical Paper

A New Iron-Base Superalloy for Exhaust Valves

1981-02-01
810032
For heavy duty gasoline or diesel engines, exhaust valves of 21-2N or 21-4N are generally coated by cobalt-base hard facing alloys, at faces. But the sluggish supply and the spiraling price of cobalt recently forced automakers to adopt valves of high-grade superalloys without hard facing. Candidate superalloys for high-performance exhaust valves are gamma-prime strengthened nickel-base alloys such as Inconel 751 and Nimonic 80A. Unfortunately above-mentioned alloys are too expensive for automobile components. So authors tried to develop a gamma-prime strengthened iron-base alloy, which bears basically 40% Ni-19% Cr-Al-Ti. To optimize Al and Ti contents the effect of the total amount and the ratio of them was examined thoroughly on hardness, strength and corrosion resistance of experimental alloys at elevated temperatures.
Technical Paper

High Strength Steel for Cylinder Head Bolt

1984-02-01
840573
JIS SCM440M (SAE4140H), heat treated to the strength level of 120 to 140 kgf/mm2(171 to 199 ksi) -ISO 12.9 class-, is currently used for cylinder head bolts of Japanese passenger cars. Lower alloy steels, such as SAE 1541 for example, have not been substituted for JIS SCM440H so far because of their high susceptibility to delayed fracture. Daido Steel has tackled this problem and succeeded in applying the lower alloy SAE 1541 steel to 12.9 class cylinder head bolts by enhancing the resistance to delayed fracture by reducing impurities, especially sulphur. In this paper mechanical properties and delayed fracture characteristics of SAE 1541-ULS (Ultra Low Sulphur) steel are reported. 1541-ULS (S<0.005%, S+P< 0.020%) shows outstanding resistance to delayed fracture compared to conventional steel. Furthermore, the amount of MnS inclusions decreases remarkably in ULS steel, which results in high toughness.
Technical Paper

High Performance Differential Gear

1989-02-01
890531
Excellent fuel economy and high performance have been urgent in Japanese automobile industries. With increasing engine power, many of the power train components have to withstand higher loads. Differential pinion gear being one of those highly stressed parts, excellent fatigue and shock resistance have been demanded. At first the fundamental study on the fatigue and impact crack behavior of carburized components was studied and the new grade composed of 0.18%C-0.7%Mn-1.0%Cr-0.4%Mo was alloy designed. Furthermore, Si and P is reduced less than 0.15 and 0.015%, respectively aiming at the reduction of intergranular oxidation and improved case toughness. The differential gear assembly test has proved that the new grade shows three times as high impact strength as that of conventional steel, SCM418, and almost the same as that of SNCM420 containing 1.8%Ni.
Technical Paper

Trends in Engine Valve Development for Automobiles and Motorcycles

2000-03-06
2000-01-0907
Engine valve development trends are to first, reduce the costly metal content and secondly, increase strength or reduce weight. These developments can be used to reduce valve cost or fuel consumption or increase power. The authors developed a new strain age hardening type alloy, NCF2415C, which has both good cold forgeability and heat resistance. Its chemical composition is Fe-24Ni-15Cr-2.2Ti-1.5Al-0.5Nb-0.02C-.006B-2Cu. This new alloy and the establishment f cold forging technology made it possible to develop cold forged exhaust valves having durability equal or better than the conventional hot forged exhaust valves.
Technical Paper

Development of New High Strength Spring Steel and Its Application to Automotive Coil Spring

2000-03-06
2000-01-0098
For the purpose of saving natural resources and energy, the requirements of vehicle weight-saving have been increasing continuously. As for Automotive Suspension Coil Spring, its weight-saving has been achieved by increasing the design stress. Since the increase of design stress requires higher fatigue life and sag resistance, the strength of spring is usually increased. However, in case of the conventional spring steel, the high strength over σB=1900MPa can dramatically reduce the corrosion fatigue life of spring, to decrease the reliability of spring at the actual usage. In this paper, newly developed spring steel material, satisfying higher strength and corrosion fatigue life simultaneously, is proposed, and its application of Automotive Suspension Coil Spring under the appropriate spring manufacturing processes in introduced.
Technical Paper

Development of Plastic Region Tightening 1.6-GPa Ultra-High Strength Bolt with High Delayed Fracture Resistance

2019-04-02
2019-01-1116
A new variable compression turbo (VC-Turbo) engine, which has a multi-link system for controlling the compression ratio from 8:1 to 14:1, requires high axial force for fastening the multi-links because of high input loads and the downsizing requirement. Therefore, it was necessary to develop a 1.6-GPa tensile strength bolt with plastic region tightening. One of the biggest technical concerns is delayed fracture. In this study, quenched and tempered alloy steels were chosen for the 1.6-GPa tensile strength bolt.
Journal Article

Stainless Steel Thermal Spray Coating of Cylinder Bores for VC-Turbo Engine

2021-04-06
2021-01-0343
Nissan’s variable compression turbo (VC-Turbo) engine has a multilink mechanism that continuously adjusts the top and bottom dead centers of the piston to change the compression ratio and achieve both fuel economy and high power performance. Increasing the exhaust gas recirculation (EGR) rate is an effective way to further reduce the fuel consumption, although this increases the exhaust gas condensation in the cylinder bores, causing a more corrosive environment. When the EGR rate is increased in a VC-Turbo engine, the combined effect of piston sliding and exhaust gas condensation at the top dead center accelerates the corrosive wear of the thermal spray coating. Stainless steel coating is used to improve the corrosion resistance, but the adhesion strength between the coating and the cylinder bores is reduced.
X