Refine Your Search

Topic

Search Results

Journal Article

Air Spring Air Damper: Modelling and Dynamic Performance in Case of Small Excitations

2013-05-13
2013-01-1922
Air spring systems gain more and more popularity in the automotive industry and with the ever growing demand for comfort nowadays they are almost inevitable. Some significant advantages over conventional steel springs are appealing for commercial vehicles as well as for the modern passenger vehicles in the luxury class. Current production air spring systems exist in combination with hydraulic shock absorbers (integrated or resolved). An alternative is to use the medium air not only as a spring but also as a damper: a so-called air spring air damper. Air spring air dampers are force elements which could be a great step for the chassis technology due to their functionality (frequency selectivity, load levelling, load independent vibration behaviour, load dependent damping). Some of their design which avoid dynamic seals by the using of rubber bellows contribute to a better ride comfort.
Journal Article

Investigation of Tire-Road Noise with Respect to Road Induced Wheel Forces and Radiated Airborne Noise

2014-06-30
2014-01-2075
Low interior noise levels in combination with a comfortable sound is an important task for passenger cars. Due to the reduction of many noise sources over the last decades, nowadays tire-road noise has become one of the dominant sources for the interior noise. Especially for manufactures of luxury cars, the reduction of tire-road noise is a big challenge and therefore a central part of NVH development. The knowledge of the noise transmission behavior based on the characteristics of the relevant sources is a fundamental of a modern NVH - development process. For tire-road noise the source characteristics can be described by wheel forces and radiated airborne noise. In combination with the related vehicle transfer functions it is possible to describe the noise transmission behavior in detail. A method for estimating wheel forces and radiated airborne noise is presented.
Technical Paper

Thermal Behavior of an Electronics Compartment with Respect to Real Driving Conditions

2020-04-14
2020-01-1299
The reliability of electronic components is of increasing importance for further progress towards automated driving. Thermal aging processes such as electromigration is one factor that can negatively affect the reliability of electronics. The resulting failures depend on the thermal load of the components within the vehicle lifetime - called temperature collective - which is described by the temperature frequency distribution of the components. At present, endurance testing data are used to examine the temperature collective for electronic components in the late development stage. The use of numerical simulation tools within Vehicle Thermal Management (VTM) enables lifetime thermal prediction in the early development stage, but also represents challenges for the current VTM processes [1, 2]. Due to the changing focus from the underhood to numerous electronic compartments in vehicles, the number of simulation models has steadily increased.
Journal Article

Durability Simulation with Chassis Control Systems: Model Depth for a Handling Maneuver

2016-09-02
2016-01-9111
This paper makes a contribution toward a more efficient chassis durability process for the development of passenger cars, in which the simulation of relevant load data is a time-consuming part. This is especially due to the full vehicle model complexity which is usually determined by the demands of rough road simulations. However, for the load calculation on a racetrack, time saving model approaches that are more simplified might be sufficient. Our investigation comprises two levels of vehicle model complexity: one with all chassis parts modeled in a multibody system environment and one characteristic curve based model in an internal simulation environment. Both approaches consider an original chassis control system as a Software-in-the-Loop model. By the evaluation of real-world experiments the main influence factors in terms of durability are demonstrated. With the help of those highly sensitive durability criteria the measurement and simulation results are then compared.
Journal Article

Experimental and Numerical Investigation of the Under Hood Flow with Heat Transfer for a Scaled Tractor-Trailer

2012-04-16
2012-01-0107
Aerodynamic design and thermal management are some of the most important tasks when developing new concepts for the flow around tractor-trailers. Today, both experimental and numerical studies are an integral part of the aerodynamic and thermal design processes. A variety of studies have been conducted how the aerodynamic design reduces the drag coefficient for fuel efficiency as well as for the construction of radiators to provide cooling on tractor-trailers. However, only a few studies cover the combined effect of the aerodynamic and thermal design on the air temperature of the under hood flow [8, 13, 16, 17, 20]. The objective of this study is to analyze the heat transfer through forced convection for a scaled Cab-over-Engine (CoE) tractor-trailer model with under hood flow. Different design concepts are compared to provide low under hood air temperature and efficient cooling of the sub components.
Journal Article

Experimental and Numerical Investigations of Thermal Soak

2008-04-14
2008-01-0396
This paper summarizes a common project of Mercedes-Benz and FKFS (Research Institute of Automotive Engineering) to apply numerical methods to thermal soak issues in a very early stage of the development phase of a new car. “Thermal soak” results from driving the vehicle at high load followed by shutting off the engine and a cool down phase. After stopping, the underhood flow is only driven by natural convection. The thermal soak behaviour is discussed in principal and the numerical challenges are summarized. Four different issues are identified: the need for a transient computation including transient thermal load pattern, a method to compute natural convection in the underhood after the shutdown of the engine, the complex geometry and the lack of a single computational program to consider all three modes of heat transfer, which results in a coupled numerical approach.
Technical Paper

Development of Universal Brake Test Data Exchange Format and Evaluation Standard

2010-10-10
2010-01-1698
Brake system development and testing is spread over vehicle manufacturers, system and component suppliers. Test equipment from different sources, even resulting from different technology generations, different data analysis and report tools - comprising different and sometimes undocumented algorithms - lead to a difficult exchange and analysis of test results and, at the same time, contributes to unwanted test variability. Other studies regarding the test variability brought up that only a unified and unambiguous data format will allow a meaningful and comparative evaluation of these data and only standardization will reveal the actual reasons of test variability. The text at hand illustrates that a substantial part of test variability is caused by a misinterpretation of data and/or by the application of different algorithms.
Technical Paper

A New Approach to Predicting Component Temperature Collectives for Vehicle Thermal Management

2017-03-28
2017-01-0134
There is a growing need for life-cycle data – so-called collectives – when developing components like elastomer engine mounts. Current standardized extreme load cases are not sufficient for establishing such collectives. Supplementing the use of endurance testing data, a prediction methodology for component temperature collectives utilizing existing 3D CFD simulation models is presented. The method uses support points to approximate the full collective. Each support point is defined by a component temperature and a position on the time axis of the collective. Since it is the only currently available source for component temperature data, endurance testing data is used to develop the new method. The component temperature range in this data set is divided in temperature bands. Groups of driving states are determined which are each representative of an individual band. Each of the resulting four driving state spaces is condensed into a substitute load case.
Technical Paper

Prediction of Wheel Forces and Moments and Their Influence to the Interior Noise

2016-06-15
2016-01-1834
This paper describes the prediction process of wheel forces and moments via indirect transfer path analysis, followed by an analysis of the influence of wheel variants and suspension modifications. It proposes a method to calculate transmission of noise to the vehicle interior where wheel forces and especially moments were taken into account. The calculation is based on an indirect transfer path analysis with geometrical modifications of the frequency response functions. To generate high quality broadband results, this paper also points out some of the main clearance cutting criteria. The method has been successfully implemented to show the influence of wheel tire combinations as well as the influence of suspension modifications. Case studies have been performed and will be presented in this paper. Operational noise and vibration measurements have been carried out on Daimler NVH test tracks. The frequency response functions were estimated in an acoustic laboratory.
Technical Paper

Improved Full Vehicle Finite Element Tire Road Noise Prediction

2017-06-05
2017-01-1901
This paper presents the application to full vehicle finite element simulation of a steady state rolling tire/wheel/cavity finite element model developed in previous work and validated at the subsystem level. Its originality consists in presenting validation results not only for a wheel on a test bench, but for a full vehicle on the road. The excitation is based on measured road data. Two methods are considered: enforced displacement on the patch centerline and enforced displacement on a 2D patch mesh. Finally the importance of taking the rotation of the tire into account is highlighted. Numerical results and test track measurements are compared in the 20-300 Hz frequency range showing good agreement for wheel hub vibration as well as for acoustic pressure at the occupant’s ears.
Technical Paper

Wall Heat Transfer in a Multi-Link Extended Expansion SI-Engine

2017-09-04
2017-24-0016
The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
Technical Paper

Investigation of the Disc Deflection Behavior of Shim Valves in Vehicle Shock Absorbers

2018-04-03
2018-01-0701
Todays tuning of hydraulic vehicle shock absorbers is mainly an empirical iterative process performed in time-consuming and expensive ride tests, whereas the majority of damper simulation models used for investigating vehicle ride behavior is based on an abstract parameterization. For the manufacturing of automotive dampers, however, the valve code is essential. Minor changes in the valve code describing the shim stack in the hydraulic valves may have a noticeable impact on the damper characteristics, while the physical effects are still not sufficiently understood. Therefore, the paper presents a detailed physics-based structural model to investigate the pressure-deflection behavior of shim stacks and the influence of specific discs in the stack. The model includes a variety of effects like friction and preload, and is capable to predict the damper characteristics.
Technical Paper

Simulation Process of the Heat Protection of a Full Vehicle

2012-04-16
2012-01-0635
In this paper the latest status of the Vehicle Thermal Management (VTM) simulation at the Mercedes-Benz Car Group is shown. First of all VTM is nowadays a routine simulation application and secondly it is embedded in a standard process which starts with the CAD data collection and ends with standard reporting of the simulation results and thirdly VTM is now an integrated simulation application in terms of VTM includes the classical underhood-underbody analysis, the analysis of electric/electronic components, the brake temperature analysis and last not least the thermal comfort of passengers. There is also a close link to the tests of vehicle hardware. Beside the operational simulation process there is a process installed which guarantees good quality of the results.
Technical Paper

Modeling of Injected Diesel Fuel Conversion and Heat Release in Oxidation Catalyst: 3D-CFD & 1D Channels Approach

2012-04-16
2012-01-1293
A system for controlled heat generation in exhaust pipeline is studied, consisting of fuel injector and oxidation catalyst (plus connecting pipes). A 3D-CFD software (StarCD) coupled with a tailored 1D model of catalytic monolith channel (XMR) are employed for simulations of realistic, fully 3D system geometry. Exhaust gas flow, fuel injection, and distribution at the catalyst inlet is solved by 3D-CFD, while the processes inside individual representative channels are simulated by the effective 1D model. The 3D-CFD software calls iteratively the 1D channel model with proper boundary conditions and solves 3D temperature profile over the monolith, utilizing local enthalpy fluxes (including gas-solid heat transfer and reaction enthalpy) calculated by the 1D channel model. Seven representative hydrocarbons are used for characterisation of Diesel fuel composition with respect to catalytic oxidation kinetics.
Technical Paper

Retrospective on Cubic Equation of State for R134a Refrigerant Used in Automotive Application

2013-01-09
2013-26-0061
The need for a consistent and reliable calculation of thermodynamic property of refrigerants has been a topic of research since the past decade. This paper reports a study of various cubic equations of state for a refrigerant being used in automotive air-conditioning applications. The thermodynamic property of refrigerant 1,1,1,2 tetrafluoroethane (commercially known as R134a) is estimated for this purpose. A comparative analysis is made on three sets of equations of state. They are Redlich Kwong equation (RK), Peng Robinson equation (PR) and Patel Teja equation. It is found that the Patel-Teja and Peng-Robinson equations are accurate in the operating region of automotive air-conditioning system. Using these literature based equations and Maxwell correlations, thermodynamic models are developed. They estimate thermodynamic properties of saturated liquid/vapor, sub-cooled liquid and superheated vapor phases.
Technical Paper

Approach to Determine Slip Values Based on the Intensity of Tire Marks with Respect to Tire and Road Properties

2013-04-08
2013-01-0781
The objective of the presented research is to analyze the cause-and-effect chain of the emergence of tire marks and to indentify how the intensity of a friction-related tire mark on asphalt or concrete pavements can provide additional information related to forces or slips at the marking wheels. Focusing on tire marks due to abrasive wear, the influences on the intensity of tire marks are analyzed based on three categories: vehicle dynamic parameters, tire and road properties, which determine the sensitivity of tire marking for a specific tire-road combination for constant vehicle dynamic parameters; and optical parameters, influencing the contrast of a given tire mark. The analysis includes a new objective method for the assessment of the tire mark intensities derived by photos of tire marks, generated with a tire measurement trailer. Additionally a test rig was developed to determine the tire marking sensitivity with reference marks under controlled friction conditions.
Technical Paper

Numerical Simulation of the Transient Heat-Up of a Passenger Vehicle during a Trailer Towing Uphill Drive

2013-04-08
2013-01-0873
In the digital prototype development process of a new Mercedes-Benz, thermal protection is an important task that has to be fulfilled. In the early stages of development, numerical methods are used to detect thermal hotspots in order to protect temperature sensitive parts. These methods involve transient full Vehicle Thermal Management (VTM) simulations to predict dynamic vehicle heat-up during critical load cases. In order to simulate thermal control mechanisms, a coupled 1D to 3D thermal vehicle model is built in which the coolant and oil circuit of the engine, as well as the exhaust flow are captured in detail. When performing a transient 3D VTM analysis, the conduction and radiation phenomena are simulated using a transient structure model while the convective phenomena are co-simulated in a steady state fluid model. Both models are brought to interaction at predetermined points by an automatized coupling method.
Technical Paper

Reduced Model of a Vehicle Cabin for Transient Thermal Simulation

2018-05-30
2018-37-0022
In the proposed work the transient thermal modeling of a vehicle cabin has been performed. Therefore, a reduced model has been developed based on a one-node discretization of the cabin air. The conduction in the solid parts is accounted for by a one-dimensional heat transfer approach, the radiation exchange between the surfaces is based on view factors adopted from a 3D reference and the convective heat transfer from the cabin surfaces to the cabin air is conducted with the help of heat transfer coefficients calculated in a 3D reference simulation. The cabin surface is discretized by planar wall elements, including the outer shell of the cabin and inner elements such as seats. Each wall element is composed of several homogeneous material layers with individual thicknesses. Investigations have been conducted on the temporal and spatial resolution of the layer structure of these wall elements, for the 3D model as well as for the reduced one.
Technical Paper

Physical 1-D System Simulation Model for Monotube Shock Absorbers for Simulation with Excitation up to 70Hz

2015-06-15
2015-01-2353
In an automotive suspension, the shock absorber plays a significant role to enable the vehicle performances, especially in ride, handling and Noise-Vibration-Harshness (NVH). Understanding its physical characteristics is of great importance, as it has a main influence on the overall vehicle performance. Within this research project simulation models for different passive monotube shock absorber systems have been created in a 1-D system simulation software. The simulation models are designed and parameterized physically. To validate the simulation models measurements on different hydropulse-shaker with specially designed control signals to investigate the response during high frequency excitation, have been done. A detailed discussion of the several models and results of a simulation to measurement comparison is given. After detailed investigation the shock absorber simulation models are now adaptable to the multi body simulation.
Technical Paper

Challenges and Opportunities of Numerically Simulating the Idle Load Case for Vehicle Thermal Management

2015-04-14
2015-01-0340
Collective life-cycle data is needed when developing components like elastomer suspension mounts. Life-time prediction is only possible using thermal load frequency distributions. In addition to current extreme load cases, the Idle Load Case is examined at Mercedes-Benz Car Group as a collective load case for Vehicle Thermal Management (VTM) numerical simulations in early development stages. It combines validation opportunities for HVAC, cooling and transmission requirements in hot-country-type ambient conditions. Experiments in climatic wind tunnels and coupled 3D CFD and heat transfer simulations of the Idle Load Case have been performed. Measurements show steady conditions at the end of the load case. Decoupling of the torque converter, changes in ambient temperature and the technical implementation of a wind barrier for still air conditions exhibit influence on component-level results. Solar load, however, does not significantly change the examined component temperatures.
X