Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Stratified Diesel Fuel-Water-Diesel Fuel Injection Combined with EGR-The Most Efficient In-Cylinder NOx and PM Reduction Technology

1997-10-01
972962
For meeting 21st-century exhaust emission standards for HD diesel engines, new methods are necessary for reducing NOx and PM emissions without increasing fuel consumption. The stratified diesel fuel-water-diesel fuel (DWD) injection in combination with exhaust gas recirculation (EGR) is as a means for NOx and PM reduction without any negative effect on fuel economy. The investigation was performed on a charged HD single-cylinder direct-injection diesel engine with a modern low-swirl combustion system, 4-valve technology and high pressure injection. The application of DWD injection combined with EGR resulted in a 60 percent lower NOx emission at full load and a 75 percent reduced NOx emission at part load when compared with present day (EURO II) technology. This was achieved without any fuel economy penalty, but with an additional PM emission reduction.
Technical Paper

Multi-Dimensional Modeling of the Effect of Injection Systems on DI Diesel Engine Combustion and NO-Formation

1998-10-19
982585
The combustion process of a heavy-duty DI-Diesel truck engine has been investigated using numerical simulation. The numerical modeling was based on an improved version of the KIVA-2 engine simulation code, employing a modified characteristic time-scale combustion model and a modified Kelvin-Helmholtz spray atomization model. The NO-formation process was modeled using the extended thermal Zeldovich mechanism. The simulation efforts included the effects of different injection characteristics such as varying the injection rate profile or number of injection holes and sizes. The physical sub-models used to improve the simulation of the mixture-formation and the combustion process were validated through comparison with single-cylinder engine experiments. Special attention was given to accurately model the in-cylinder flame propagation of the individual sprays and their effect on thermal NO-formation. All simulations were based on full load cases at medium speed.
Technical Paper

Aftertreatment System for NOx and Soot Removal - Evaluation of an Integrated System

1996-10-01
962044
The two major problems of diesel emission control are the reduction of nitrogen oxides and particulates. This paper describes experimental investigations to achieve both a separation of soot particles as well as a catalytic NOx reduction with hydrocarbons under lean diesel exhaust gas conditions. For that purpose a diesel particle trap is coated with a catalyst based on a Pt containing zeolite. Preliminary studies have been performed on the catalytic NOx reduction to evaluate the efficiency of a Pt/zeolite system as well as to establish the impact of operation conditions on the catalyst performance. The activity of the prepared samples (catalytic coating on particle trap) has been determined under model gas test conditions. Much attention has been focussed on the steady-state kinetics of the surface processes. Another aspect considered is the N2O formation which can be reduced, when alkali-earth or rare-earth oxides are added to the catalyst system.
Technical Paper

Rapid CFD Simulation of Internal Combustion Engines

1999-03-01
1999-01-1185
Multi-dimensional modelling of the flow and combustion promises to become a useful optimisation tool for IC engine design. Currently, the total simulation time for an engine cycle is measured in weeks to months, thus preventing the routine use of CFD in the design process. Here, we shall describe three tools aimed at reducing the simulation time to less than a week. The rapid template-based mesher produces the computational mesh within 1-2 days. The parallel flow solver STAR-CD performs the flow simulation on a similar time-scale. The package is completed with COVISEMP, a parallel post-processor which allows real-time interaction with the data.
X