Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Model-Based Air-Fuel Ratio Control of a Lean Multi-Cylinder Engine

1995-02-01
950846
Realization of the leanburn SI engine's potential for improved fuel economy strongly depends on precise control of the air-fuel ratio (AFR), especially during transients, for acceptable driveability and low exhaust emissions. The development of an adaptive-feedforward model-based AFR controller is described. A discrete, nonlinear, control-oriented engine model was developed and used in the AFR control algorithm. The engine model includes intake-manifold airflow dynamics, fuel wall-wetting dynamics, process delays inherent in the four-stroke engine cycle, and exhaust-gas oxygen (UEGO) sensor dynamics. The sampling period is synchronous with crank-angle (“event-based”) for more precise control. The controller relies on the engine speed and throttle position for load information. An intake-manifold pressure (MAP) sensor is used for identification of the airflow dynamics, but not for control. The MAP sensor would also be useful for the cold start and for engine diagnostics.
Technical Paper

Reduction of Hydrocarbon Emissions from SI-Engines by Use of Carbon Pistons

1995-10-01
952538
The use of pistons made of fine grain carbon was investigated in a spark-ignition engine within a European Community funded research project (TPRO-CT92-0008). Pistons were designed and manufactured and then tested in a single cylinder engine. Due to the carbon material's lower coefficient of thermal expansion the top land clearance between piston and cylinder can be reduced by a factor of three in comparison to standard aluminium designs. Under steady-state part-load operating conditions the emission of unburned hydrocarbons can be reduced by more than 15% compared to aluminium pistons, without significant penalties in NOx-emissions. Simultaneously, a small improvement in fuel economy of about 2% is observed. At full-load blow-by leakage flow is reduced by more than 50%. The piston crown temperature is about 30°C higher with the carbon piston than with the standard aluminium piston, due to the lower thermal conductivity of the carbon material.
Technical Paper

The Effect of Operating Conditions at Idle in the S.I. Engine

1997-10-01
972990
A gasoline engine with an electronically controlled fuel injection system has substantially better fuel economy and lower emissions than a carburetted engine. In general, the stability of engine operation is improved with fuel injector, but the stability of engine operation at idle is not improved compared with a carburetted gasoline engine. In addition, the increase in time that an engine is at idle due to traffic congestion has an effect on the engine stability and vehicle reliability. Therefore, in this research, we will study the influence of fuel injection timing, spark timing, dwell angle, and air-fuel ratio on engine stability at idle.
Technical Paper

Stratified Diesel Fuel-Water-Diesel Fuel Injection Combined with EGR-The Most Efficient In-Cylinder NOx and PM Reduction Technology

1997-10-01
972962
For meeting 21st-century exhaust emission standards for HD diesel engines, new methods are necessary for reducing NOx and PM emissions without increasing fuel consumption. The stratified diesel fuel-water-diesel fuel (DWD) injection in combination with exhaust gas recirculation (EGR) is as a means for NOx and PM reduction without any negative effect on fuel economy. The investigation was performed on a charged HD single-cylinder direct-injection diesel engine with a modern low-swirl combustion system, 4-valve technology and high pressure injection. The application of DWD injection combined with EGR resulted in a 60 percent lower NOx emission at full load and a 75 percent reduced NOx emission at part load when compared with present day (EURO II) technology. This was achieved without any fuel economy penalty, but with an additional PM emission reduction.
Technical Paper

Advanced Engine Control and Exhaust Gas Aftertreatment of a Leanburn SI Engine

1997-10-01
972873
The development of a leanburn engine is described, in which optimized engine design, innovative engine management and exhaust gas aftertreatment using a special NOx-storage catalyst were combined to yield a significant improvement in fuel economy with reduced NOx emissions. To achieve stable combustion near the lean limit a swirl system was used and the appropriate parameters of the 2.2 I 4-cyIinder 4-valve SI engine were optimized. As a result, the mixture formation was improved and the lean limit was extended to higher air-fuel ratios. An adaptive lambda controller which was based on the evaluation of engine-smoothness calculated from the RPM-sensor was implemented to control each cylinder individually close to the lean limit. A model-based control system was developed to achieve extremely accurate air-fuel ratio control during transients.
Technical Paper

Making the Case for a Next Generation Automotive Electrical System

1998-10-19
98C006
Introduction of an array of new electrical and electronic features into future vehicles is generating vehicle electrical power requirements that exceed the capabilities of today's 14 volt electrical systems. In the near term (5 to 10 years), the existing 14V system will be marginally capable of supporting the expected additional loads with escalating costs for the associated charging system. However, significant increases in vehicle functional content are expected as future requirements to meet longer-term (beyond 10 years) needs in the areas of emission control, fuel economy, safety, and passenger comfort. A higher voltage electrical system will be required to meet these future requirements. This paper explores the functional needs that will mandate a higher voltage system and the benefits derivable from its implementation.
Technical Paper

Evaluation of NOx Storage Catalysts as an Effective System for NOx Removal from the Exhaust Gas of Leanburn Gasoline Engines

1995-10-01
952490
One possibility to improve the fuel economy of SI-engines is to run the engine with a lean air-fuel-ratio (AFR). Hydrocarbon and carbon monoxide after-treatment has been proven under lean operation, but NOx-control remains a challenge to catalyst and car manufacturers. One strategy that is being considered is to run the engine lean with occasional operation at stoichiometry. This would be in conjunction with a three-way-catalyst (TWC) to achieve stoichiometric conversion of the three main pollutants in the normal way and a NOx trap. The NOx trap stores NOx under lean operation to be released and reduced under rich conditions. The trap also functions as a TWC and has good HC and CO conversion at both lean and stoichiometric AFR's. Under lean conditions NO is oxidised to NO2 on Pt which is then adsorbed on an oxide surface. Typical adsorbent materials include oxides of potassium, calcium, zirconium, strontium, lanthanum, cerium and barium.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Technical Paper

LOOP SCAVENGING versus THROUGH SCAVENGING of TWO-STROKE ENGINES

1958-01-01
580044
THIS paper reports the latest investigation of the relative merits of loop scavenging versus through scavenging. The authors hope that the conditions of the work permitted an objective evaluation of the two types of engines. The results of the study may be summarized as follows: 1. With symmetrical timing, neither cylinder shows significant advantage in trapping efficiency. 2. With symmetrical timing, the best ratio of exhaust-port to inlet-port effective area seems to be about 0.6. 3. Unsymmetrical timing is an effective method of improving trapping efficiency. 4. The value of net indicated fuel economy shows no significant difference between the two cylinders. The authors point out that because the areas were equal it is unlikely that the optimum port design of each type was used in comparing the cylinders. If optimum porting had been used, the two types might have shown more difference.
Technical Paper

Optimizing Base Oil Viscosity Temperature Dependence For Power Cylinder Friction Reduction

2014-04-01
2014-01-1658
Lubricant viscosity along the engine cylinder liner varies by an order of magnitude due to local temperature variation and vaporization effects. Tremendous potential exists for fuel economy improvement by optimizing local viscosity variations for specific operating conditions. Methods for analytical estimation of friction and wear in the power-cylinder system are reviewed and used to quantify opportunities for improving mechanical efficiency and fuel economy through lubricant formulation tailored specifically to liner temperature distributions. Temperature dependent variations in kinematic viscosity, density, shear thinning, and lubricant composition are investigated. Models incorporating the modified Reynolds equation were used to estimate friction and wear under the top ring and piston skirt of a typical 11.0 liter diesel engine.
Technical Paper

Investigating the Effect of Intake Manifold Size on the Transient Response of Single Cylinder Turbocharged Engines

2017-09-04
2017-24-0170
This paper evaluates the lag time in a turbocharged single cylinder engine in order to determine its viability in transient applications. The overall goal of this research is to increase the power output, reduce the fuel economy, and improve emissions of single cylinder engines through turbocharging. Due to the timing mismatch between the exhaust stroke, when the turbocharger is powered, and the intake stroke, when the engine intakes air, turbocharging is not conventionally used in commercial single cylinder engines. Our previous work has shown that it is possible to turbocharge a four stroke, single cylinder, internal combustion engine using an air capacitor, a large volume intake manifold in between the turbocharger compressor and engine intake. The air capacitor stores compressed air from the turbocharger during the exhaust stroke and delivers it during the intake stroke.
Technical Paper

Modeling Costs and Fuel Economy Benefits of Lightweighting Vehicle Closure Panels

2008-04-14
2008-01-0370
This paper illustrates a methodology in which complete material-manufacturing process cases for closure panels, reinforcements, and assembly are modeled and compared in order to identify the preferred option for a lightweight closure design. First, process-based cost models are used to predict the cost of lightweighting the closure set of a sample midsized sports utility vehicle (SUV) via material and process substitution. Weight savings are then analyzed using a powertrain simulation to understand the impact of lightweighting on fuel economy. The results are evaluated in the context of production volume and total mass change.
Technical Paper

Some Special Features of the Turbocharged Gasoline Engine

1979-02-01
790207
Some special features of the turbocharged gasoline engine are discussed in comparison with the turbocharged Diesel engine. The influence of compression-ratio, temperature of the charge air, air/fuel-ratio and ignition-timing on combustion, fuel economy and power output is shown. A combined compressor- and engine air-flow-map of the turbocharged gasoline-engine is developed and the features of a compressor matching the special requirements of a TC gasoline engine are deduced from this map. The position of the throttle in the intake-system, which has great influence on governing-qualities and load-change-responce of a turbocharged gasoline engine is discussed and the problems and disadvantages of a waste-gate governed turbocharger especially in connection with a gasoline engine are figured out.
Journal Article

Engine Friction Accounting Guide and Development Tool for Passenger Car Diesel Engines

2013-10-14
2013-01-2651
The field of automotive engineering has devoted much research to reduce fuel consumption to attain sustainable energy usage. Friction reductions in powertrain components can improve engine fuel economy. Quantitative accounting of friction is complex because it is affected by many physical aspects such as oil viscosity, temperature, surface roughness and component rotation speed. The purpose of this paper is two-fold: first, to develop a useful tool for evaluating the friction in engine and accessories based on test data; second, to exercise the tool to evaluate the fuel economy gain in a drive cycle for several friction reduction technologies.
Journal Article

Ash Permeability Determination in the Diesel Particulate Filter from Ultra-High Resolution 3D X-Ray Imaging and Image-Based Direct Numerical Simulations

2017-03-28
2017-01-0927
Diesel engine exhaust aftertreatment components, especially the diesel particulate filter (DPF), are subject to various modes of degradation over their lifetimes. One particular adverse effect on the DPF is the significant rise in pressure drop due to the accumulation of engine lubricant-derived ash which coats the inlet channel walls effectively decreasing the permeability of the filter. The decreased permeability due to ash in the DPF can result in increased filter pressure drop and decreased fuel economy. A unique two-step approach, consisting of experimental measurements and direct numerical simulations using ultra-high resolution 3D imaging data, has been utilized in this study to better understand the effects of ash accumulation on engine aftertreatment component functionality.
Journal Article

Analysis of Ash in Low Mileage, Rapid Aged, and High Mileage Gasoline Exhaust Particle Filters

2017-03-28
2017-01-0930
To meet future particle mass and particle number standards, gasoline vehicles may require particle control, either by way of an exhaust gas filter and/or engine modifications. Soot levels for gasoline engines are much lower than diesel engines; however, non-combustible material (ash) will be collected that can potentially cause increased backpressure, reduced power, and lower fuel economy. The purpose of this work was to examine the ash loading of gasoline particle filters (GPFs) during rapid aging cycles and at real time low mileages, and compare the filter performances to both fresh and very high mileage filters. Current rapid aging cycles for gasoline exhaust systems are designed to degrade the three-way catalyst washcoat both hydrothermally and chemically to represent full useful life catalysts. The ash generated during rapid aging was low in quantity although similar in quality to real time ash. Filters were also examined after a low mileage break-in of approximately 3000 km.
Journal Article

Ash Effects on Diesel Particulate Filter Pressure Drop Sensitivity to Soot and Implications for Regeneration Frequency and DPF Control

2010-04-12
2010-01-0811
Ash, primarily derived from diesel engine lubricants, accumulates in diesel particulate filters directly affecting the filter's pressure drop sensitivity to soot accumulation, thus impacting regeneration frequency and fuel economy. After approximately 33,000 miles of equivalent on-road aging, ash comprises more than half of the material accumulated in a typical cordierite filter. Ash accumulation reduces the effective filtration area, resulting in higher local soot loads toward the front of the filter. At a typical ash cleaning interval of 150,000 miles, ash more than doubles the filter's pressure drop sensitivity to soot, in addition to raising the pressure drop level itself. In order to evaluate the effects of lubricant-derived ash on DPF pressure drop performance, a novel accelerated ash loading system was employed to generate the ash and load the DPFs under carefully-controlled exhaust conditions.
Journal Article

Characteristics and Effects of Lubricant Additive Chemistry on Ash Properties Impacting Diesel Particulate Filter Service Life

2010-04-12
2010-01-1213
Ash accumulation in diesel particulate filters, mostly from essential lubricant additives, decreases the filter's soot storage capacity, adversely affects fuel economy, and negatively impacts the filter's service life. While the adverse effects of ash accumulation on DPF performance are well known, the underlying mechanisms controlling these effects are not. To address these issues, results of detailed measurements with specially formulated lubricants, correlating ash properties to individual lubricant additives and their effects on DPF pressure drop, are presented. Investigations using the specially-formulated lubricants showed ash consisting primarily of calcium sulfates to exhibit significantly increased flow resistance as opposed to ash primarily composed of zinc phosphates. Furthermore, ash accumulated along the filer walls was found to be packed approximately 25% denser than ash accumulated in the channel end-plugs.
Technical Paper

Phenomenological Investigations of Mid-Channel Ash Deposit Formation and Characteristics in Diesel Particulate Filters

2019-04-02
2019-01-0973
Accumulation of lubricant and fuel derived ash in the diesel particulate filter (DPF) during vehicle operation results in a significant increase of pressure drop across the after-treatment system leading to loss of fuel economy and reduced soot storage capacity over time. Under certain operating conditions, the accumulated ash and/or soot cake layer can collapse resulting in ash deposits upstream from the typical ash plug section, henceforth termed mid-channel ash deposits. In addition, ash particles can bond (either physically or chemically) with neighboring particles resulting in formation of bridges across the channels that effectively block access to the remainder of the channel for the incoming exhaust gas stream. This phenomenon creates a serious long-term durability issue for the DPF, which often must be replaced. Mid-channel deposits and ash bridges are extremely difficult to remove from the channels as they sinter to the substrate.
X