Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Driver out-of-position injuries mitigation and advanced restraint features development

2001-06-04
2001-06-0069
Airbag-related out-of-position (OOP) injuries in automotive crash accident have drawn great attention by public in recent years. In the interim-final rule of Federal Motor Vehicle Safety Standards that NHTSA issued in May 2000, OOP static test becomes a mandatory requirement of new regulation and will be phased in starting from year 2003. Due to the complexities and constraints of vehicle design, such as extreme vehicle styling and packaging as well as multiple safety requirements, it is a great challenge for both restraint safety suppliers and automobile manufacturers work together to come up with proper designs to meet requirements of new regulation and provide additional protection for both in-position and OOP occupants at various vehicle crash scenarios. In this paper, the technique of developing advanced restraint system and mitigating the OOP injuries is described.
Technical Paper

Predicted vs. Actual Compensation in a Stamping Die

2001-10-16
2001-01-3108
Traditional methods used to produce a die set (from developing initial machining cutter paths through finalized die tryout to produce a part that meets design intent) begin with draw simulation and development. It is here, traditionally, that scientific evaluation of actual metal stretch and theoretical ideals end. In past programs, a designed part would be simulated for stretch and a development model created to include various die compensations (i.e. springback, overcrown, etc.) based on past experience for area and amount. At this point, the die is cut and undergoes a metamorphosis through die tryout to finally produce a quality part. This is currently an open loop system. This paper will focus on the differences in the predicted way the die should look and the actual outcome (after part buyoff).
Technical Paper

Perforation Corrosion Performance of Autobody Steel Sheet in On-Vehicle and Accelerated Tests

2003-03-03
2003-01-1238
The Auto/Steel Partnership Corrosion Project Team has completed a perforation corrosion test program consisting of on-vehicle field exposures and various accelerated tests. Steel sheet products with eight combinations of metallic and organic coatings were tested, utilizing a simple crevice coupon design. On-vehicle exposures were conducted in St. John's and Detroit for up to seven years to establish a real-world performance standard. Identical test specimens were exposed to the various accelerated tests, and the results were compared to the real-world standard. This report documents the results of these tests, and compares the accelerated test results (including SAE J2334, GM9540P, Ford APGE, CCT-I, ASTM B117, South Florida Modified Volvo, and Kure Beach (25-meter) exposures) to the on-vehicle tests. The results are compared in terms of five criteria: extent of corrosion, rank order of material performance, degree of correlation, acceleration factor, and control of test environment.
Technical Paper

An Impact Pulse-Restraint Energy Relationship and Its Applications

2003-03-03
2003-01-0505
This paper presents an energy relationship between vehicle impact pulses and restraint systems and applies the relationship to formulations of response factors for linear and nonlinear restraints. It also applies the relationship to derive optimal impact pulses that minimize occupant response for linear and nonlinear restraints. The relationship offers a new viewpoint to impact pulse optimization and simplifies the process mathematically. In addition, the effects of different vehicle impact pulses on the occupant responses with nonlinear restraints are studied. Finally, concepts of equivalent pulses and equal intensity pulses are presented for nonlinear restraints.
Technical Paper

OOP Response of THOR and Hybrid-III 50th% ATDs

2006-04-03
2006-01-0065
The responses of the THOR and the Hybrid-III ATDs to head and neck loading due to a deploying air bag were investigated. Matched pair tests were conducted to compare the responses of the two ATDs under similar loading conditions. The two 50th percentile male ATDs, in the driver as well as the passenger positions, were placed close to the air bag systems, in order to enhance the interaction between the deploying air bag and the chin-neck-jaw regions of the ATDs. Although both ATDs nominally meet the same calibration corridors, they differ significantly in their kinematic and dynamic responses to interaction with a deploying air bag. The difference between the structural designs of the Hybrid-III's and the THOR's neck appears to result in significant differences in the manner in which the loads applied on the head are resisted.
Technical Paper

Optimization of Single-Point Frontal Airbag Fire Threshold

2000-03-06
2000-01-1009
The relationship of the airbag fire-distribution as a function of impact velocity to the airbag fire-time is studied through the use of an optimization procedure. The study is conducted by abstracting the sensor algorithm and its associated constraints into a simple mathematical formulation. An airbag fire objective function is constructed that integrates the fire-rate and fire-time requirements. The function requires the input of a single acceleration time history; it produces an output depending on the airbag fire condition. Numerical search of the optimal fire threshold curve is achieved through parameterizing this curve and applying a modified simplex search optimization algorithm that determines the optimal threshold function parameters without computing the complete objective function in the parameter space. Numerical results are given to show the effectiveness and potential difficulties with the automatic search scheme.
Technical Paper

A Stochastic Approach for Occupant Crash Simulation

2000-04-02
2000-01-1597
Stochastic simulation is used to account for the uncertainties inherent to the system and enables the study of crash phenomenon. For analytical purposes, random variables such as material crash properties, angle of impact, human response and the like can be characterized using statistical models. The methodology outlined in this approach is based on using the information about the probability of random variables along with structural behavior in order to quantify the scatter in the structural response. Thus the analysis gives a more complete picture of the actual simulation. Practical examples for the use of this technique are demonstrated and an overview of this approach is presented.
Technical Paper

Development of an Airbag System for FIA Formula One and Comparison to the HANS Head and Neck Support

2000-11-13
2000-01-3543
A comparative investigation of airbag and HANS driver safety systems was carried out (HANS, is a Registered Trademark in the U.S.A.). With both systems, head and neck loads were reduced from potentially fatal values to values well below the injury threshold. Both systems performed similarly in reducing the potential for driver injury. For this reason and given the high costs of development and testing, there is no justification for further development of airbags for racing.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Comparative Evaluation of the Q3 and Hybrid Iii 3-Year-Old Dummies in Biofidelity and Static Out-Of-Position Airbag Tests

2000-11-01
2000-01-SC03
A comparison of the Q3 and Hybrid III 3-year-old crash test dummies is presented in this paper. The performance of the dummies were compared in sixty biofidelity tests, seventy-seven static out-of-position airbag tests and sixty- three calibration tests. Various time histories and other data pertaining to accelerations, deflections, forces and moments are compared. In addition, the ease of positioning, handling, and the durability of the dummies in various out- of-position test configurations was assessed. Both the Q3 and Hybrid III 3-year-old dummies were calibrated to their respective specifications. The Hybrid III 3-year-old met its calibration requirements, while the Q3 did not always meet its own calibration requirements. The calibration specifications of the Q3 dummy need to be re-examined and possibly refined. The biofidelity of the Q3 and Hybrid III 3-year-old dummies were evaluated in both frontal and lateral test modes.
X