Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

DOE Analysis of Factors Affecting Ultimate Strength of Multiple Resistance Spot Welded Joints

2007-04-16
2007-01-1661
More than 200 tensile-shear resistance spot welded specimens were produced and tested to analyze the effect of spot weld spacing, weld size, sheet thickness, and adhesive on the ultimate strength of joints made from a mild hot dip galvannealed steel and an unexposed quality hot dip galvannealed 590 MPa minimum tensile strength dual phase steel (DP590). The geometric layout parameters were analyzed by a design of experiment (DOE) approach. The analysis showed that weld size is a primary factor affecting the strength of the joints for a given material. It was also determined that structural adhesive created a large relative strengthening for joints made from the mild steel. Interactions of the geometrical factors are also presented.
Technical Paper

Impact Dependent Properties of Advanced and Ultra High Strength Steels

2007-04-16
2007-01-0342
The automotive industry is pursuing significant cost competitive efforts to reduce vehicle weight while maintaining or improving durability and impact performance. One such effort for the body shell structure is the utilization of advanced and ultra high strength steels (AHSS and UHSS) using the existing automotive manufacturing infrastructure. Common AHSS and UHSS steels include Dual Phase (DP), Transformation Induced Plasticity (TRIP), Partial Martensitic (PM) and others. The use of these multiphase high strength steels for impact dependent components has resulted in the need for further material characterization in order to better predict impact performance and guide new material development. This paper addresses the material properties and microstructural influences on impact behavior of advanced and ultra high strength steels through the use of laboratory tests and component level testing.
Technical Paper

Shear Fracture in Advanced High Strength Steels

2006-04-03
2006-01-1433
Significant efforts are underway in the automotive industry to reduce vehicle weight while maintaining performance and cost competitiveness. One such effort is the use of advanced high strength steels (AHSS) as the primary body materials method to meet weight targets using the existing automotive manufacturing infrastructure. Issues related to the stamping of AHSS are well known, and significant hurdles still exist for successful implementation. Due to material strength and mechanical behavior, springback is a major hurdle in forming AHSS. While working to form AHSS parts and reduce springback, press shops have encountered a new fracture type. The term shear fracture or local elongation has been loosely used to specify these fractures, which occur at part radii under low strains in multiphase AHSS. These fractures cause design limitations and manufacturing uncertainty.
Technical Paper

Perforation Corrosion Performance of Autobody Steel Sheet in On-Vehicle and Accelerated Tests

2003-03-03
2003-01-1238
The Auto/Steel Partnership Corrosion Project Team has completed a perforation corrosion test program consisting of on-vehicle field exposures and various accelerated tests. Steel sheet products with eight combinations of metallic and organic coatings were tested, utilizing a simple crevice coupon design. On-vehicle exposures were conducted in St. John's and Detroit for up to seven years to establish a real-world performance standard. Identical test specimens were exposed to the various accelerated tests, and the results were compared to the real-world standard. This report documents the results of these tests, and compares the accelerated test results (including SAE J2334, GM9540P, Ford APGE, CCT-I, ASTM B117, South Florida Modified Volvo, and Kure Beach (25-meter) exposures) to the on-vehicle tests. The results are compared in terms of five criteria: extent of corrosion, rank order of material performance, degree of correlation, acceleration factor, and control of test environment.
X