Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

The Influence of Rotating Wheels on Vehicle Aerodynamics - Numerical and Experimental Investigations

2007-04-16
2007-01-0107
Investigations of the aerodynamic influence of rotating wheels on a simplified vehicle model as well as on a series production car are presented. For this research CFD simulations are used together with wind tunnel measurements like LDV and aerodynamic forces. Several wheel rim geometries are examined in stationary and in rotating condition. A good agreement could be achieved between CFD simulations and wind tunnel measurements. Based on the CFD analysis the major aerodynamic mechanisms at rotating wheels are characterized. The flow topology around the wheels in a wheel arch is revealed. It is shown, that the reduction of drag and lift caused by the wheel rotation on the isolated wheel and the wheel in the wheel arch are based on different effects of the airflow. Though the forces decrease at the front wheel due to the wheel rotation locally, the major change in drag and lift happens directly on the automotive body itself.
Technical Paper

Flow around an Isolated Wheel - Experimental and Numerical Comparison of Two CFD Codes

2004-03-08
2004-01-0445
This paper presents velocity and pressure measurements obtained around an isolated wheel in a rotating and stationary configuration. The flow field was investigated using LDA and a total pressure probe in the model scale wind tunnel at IVK/FKFS. Drag and lift were determined for both configurations as well as for the wheel support only. These results were used as a reference for comparing numerical results obtained from two different CFD codes used in the automotive industry, namely STAR-CD™ and PowerFLOW™. The comparison gives a good overall agreement between the experimental and the simulated data. Both CFD codes show good correlation of the integral forces. The influence of the wheel rotation on drag and lift coefficients is predicted well. All mean flow structures which can be found in the planes measured with LDA can be recognized in the numerical results of both codes. Only small local differences remain, which can be attributed to the different CFD codes.
Technical Paper

Correction of Nozzle Gradient Effects in Open Jet Wind Tunnels

2004-03-08
2004-01-0669
In open jet wind tunnels with high blockage ratios a sharp rise in drag is observed for models approaching the nozzle exit plane. The physical background for this rise in drag will be analyzed in the paper. Starting with a basic analysis of the dependencies of the effect on model and wind tunnel properties, the key parameters of the problem will be identified. It will be shown using a momentum balance and potential flow theory that interaction between model and nozzle exit can result in significant tunnel-induced gradients at the model position. In a second step, a CFD-based investigation is used to show the interaction between nozzle exit and a bluff body. The results cover the whole range between open jet and closed wall test section interaction. The model starts at a large distance from the nozzle, then moves towards the nozzle, enters the nozzle and is finally completely inside the nozzle.
Technical Paper

A Nozzle-Integrated Flow Sensor for Common-Rail Injection Systems

2001-03-05
2001-01-0614
We are the first to report about a micromachined flow sensor directly integrated in the Common Rail injection nozzle body between the double guidance and the tip of the nozzle. The thermal measurement principle is chosen, because it enables a very precise and fast detection of gaseous and liquid mass flows. Additionally, the velocity field in the nozzle is only slightly influenced by the integration of the sensor in the nozzle body due to the negligible height of the sensitive layer. For a hot film anemometer, a high pressure stable ceramic substrate can be used, fabricated in a low cost batch process. The technology, to fabricate the sensor, as well as the first flow measurements, carried out at a high pressure test set up, are presented.
Technical Paper

Numerical Analysis of the Flow Over Convertibles

2001-05-14
2001-01-1762
In the present study, the exterior air flow over convertibles together with the interior flow in the passenger compartment has been calculated using the commercial CFD program STAR-CD. The investigations have been performed for a SLK-class Mercedes with two occupants. The computational mesh consists of about 3 million hexahedra cells. The detailed informations of the calculated flow field have been used to elaborate the characteristic flow phenomena and increase the physical understanding of the flow. The influence of different geometrical modifications (variations of roof spoiler, variations of the draft stop behind the seats etc.) on the flow field and the air draft experienced by the occupants has been analyzed. To proof the accuracy of the numerical results, wind tunnel experiments in a full scale and 1:5 scale wind tunnel have been carried out for the basic car model as well as for several geometrical variations.
Technical Paper

Panel Noise Contribution Analysis: An Experimental Method for Determining the Noise Contributions of Panels to an Interior Noise

2003-05-05
2003-01-1410
A new method for estimating the sound pressure level (SPL) at a defined position of the interior is presented. It is possible to recalculate the interior noise dependent on the sound radiated by specified panels which encloses the interior. It could be applied to analyse the interior acoustics under different operating conditions. This could be normal driving on real roads or pure wind noise inside wind tunnels. Also it is possible to study the interior noise under an artificial force excitation applied to the trimmed body. The method is based on the theoretical background of TPA (= Transfer Path Analysis /1/ ) via matrix inversion. It was tested on a simple cuboid structure with an artificial force excitation. The comparison of the measured and recalculated SPL of the interior shows a good correlation. Also the influence of some physical modifications at identified critical areas corresponds with the expected influence to the measured SPL inside this structure.
Technical Paper

Strategies to Reduce HC-Emissions During the Cold Starting of a Port Fuel Injected Gasoline Engine

2003-03-03
2003-01-0627
In view of tight emission standards, injection strategies to reduce raw HC-emissions during the cold starting of port fuel injected engines are evaluated in this study. The relevance of spray targeting and atomization is outlined in the first part of this paper. The foundation and performance of different injector concepts with respect to spray characteristics are discussed. Laboratory experiments demonstrate that concepts relying on auxiliary energy, such as air-assistance, fuel heating and injection at elevated system pressures, are capable of producing spray droplet sizes in the SMD-range of 25μm. For future injection strategies aimed at the compliance of SULEV emission levels, this target value is considered to be essential. In the second part of this paper, emission tests of selected injector concepts are carried out using a V6-3.2I ULEV engine operated both in a vehicle and on a test bench.
Technical Paper

Emissions Performance of GTL Diesel Fuel and Blends with Optimized Engine Calibrations

2005-05-11
2005-01-2187
The results of a comprehensive experimental investigation into the exhaust emission performance and combustion properties of neat and blended Gas-To-Liquids (GTL) diesel fuel are presented. A sulphur-free European diesel fuel was used as the reference fuel, and two blends of the GTL diesel fuel with the reference fuel, containing 20% and 50% GTL diesel fuel respectively, were investigated. The study was based on a Mercedes Benz 2.2 liter passenger car diesel engine and presents emission data for both the standard engine calibration settings, as well as settings which were optimized to match the characteristics of each fuel. Vehicle emission tests showed that the GTL diesel fuel results in reductions in HC and CO emissions of greater than 90%, while PM is reduced by 30%, and NOx remains approximately unchanged. Engine bench dynamometer tests showed reductions in soot of between 30% and 60%, and NOx reductions of up to 10% with the GTL diesel fuel, depending on the operating point.
Technical Paper

Underhood Temperature Analysis in Case of Natural Convection

2005-05-10
2005-01-2045
This paper describes a method to simulate underhood temperature distributions in passenger cars. A simplified engine compartment simulation test rig is used to perform measurements with well known boundary conditions to validate the simulation strategy. The measurement setup corresponds to idle without working fan. The aim of this setup is to validate cases with strong natural convection, e.g. thermal soaking. A coupled steady-state CFD run and thermal analysis is undertaken to simulate the temperature distribution in the test rig. Convective heat transfer coefficients and air temperatures are calculated in StarCD™. The radiative and conductive heat transfer is considered in a RadTherm™ analysis. The strong coupling of flow field and wall temperature in buoyancy driven flows requires an iterative process. Calculated temperatures are compared to measured results in order to validate the simulation method as far as possible. Some of the results are reported in this paper.
Technical Paper

Vibro-acoustic FEA Modeling of Two Layer Trim Systems

2005-05-16
2005-01-2325
This paper investigates the potential of using FEA poro-elastic Biot elements for the modeling carpet-like trim systems in a simplified setup. A comparison between FEA computations and experiments is presented for two layer (mass-spring) trim systems placed on a test-rig consisting in a 510×354×1.6 mm flat steel plate clamped in a stiff frame excited at its base. Results are presented for a given heavy layer with two different poro-elastic materials: one foam and one fibrous material. The investigations included accelerometer measurements on the steel plate, laser-doppler vibrometer scans of the heavy layer surface, sound pressure measurements in free field at a distance of 1 meter above the plate, as well as sound pressure in a closed rectangular concrete-walled cavity (0.5×0.6×0.7 m) put on top of the test-rig. Computations were carried out using a commercial FEA software implementing the Biot theory for poro-elastic media.
Technical Paper

On Road Testing of Advanced Common Rail Diesel Vehicles with Biodiesel from the Jatropha Curcas plant

2005-10-23
2005-26-356
This paper addresses the use of neat, indigenous biodiesel in advanced Mercedes-Benz passenger cars. Modern, unmodified EU3 Common-Rail diesel engines with second generation common rail technology were used to determine the effects of neat biodiesel on performance and emission characteristics. The biodiesel was made from the seeds of the Jatropha Curcas plant and sourced from the Central Salt and Marine Chemicals Research Institute in Bhavnagar, India. The production of biodiesel and the vehicle tests are part of a PPP project, funded jointly by the DaimlerChrysler AG and the German DEG. The project aims at providing additional jobs and income in rural Indian areas along with reclaiming unused wasteland. The test vehicles were operated for a cumulative 8000 kilometers with an intention to expose the vehicle and fuel to diverse climatic conditions.
Technical Paper

Current Status and Prospects for Gasoline Engine Emission Control Technology - Paving the Way for Minimal Emissions

2000-03-06
2000-01-0856
The background for the development activities of the motor vehicle industry is strongly influenced by lawmakers, with engine development, in particular, coming under increasing pressure from the requirements of emissions legislation. Demands for CO2 reduction and thus corresponding savings in consumption contrast with regulations which call for compliance with extremely low emission levels, featuring the extreme of zero tailpipe emissions, and alternative low emission levels which make accurate measurement a problem even with current analysis technology. An example of such requirements are the SULEV limits of California law. These standards have given rise to a wide variety of emission control concepts, each of which, however, has certain limitations in its application. In the context of this general setting, the paper shows that the phase directly subsequent to cold start should be focused upon if these ambitious targets are to be reached.
Technical Paper

A New Approach to Particulate Measurement on Transient Test Cycles: Partial Flow Dilution as Alternative to CVS Full Flow Systems

2000-03-06
2000-01-1134
In a subproject of the aim to develop a worldwide certification procedure for heavy-duty on-highway engines (WHDC), the measuring technique for future low emitting engines was evaluated. One aspect is the introduction of partial flow dilution systems for the particulates measurement during transient test cycles instead of the currently required full flow dilution systems. This paper presents an investigation about the influence of sensitive sampling parameters on particulate mass and composition under steady state and transient engine operating conditions, and their effect on the correlation between partial flow and full flow dilution systems. The study has shown that the sampling parameters investigated have no or only minor influence on particulate mass and composition. Both partial flow dilution systems proved their transient capability by tracking the exhaust flow signal very well.
Technical Paper

Potential of Common Rail Injection System for Passenger Car DI Diesel Engines

2000-03-06
2000-01-0944
The improvement of DI diesel engines for passenger cars to fulfil pollutant emission limits and lower fuel consumption and noise is closely linked to continued development of the injection system. Today's injection systems demonstrate varying potential in terms of the flexibility of injection parameters for improving mixture formation and combustion. DaimlerChrysler evaluated the potential of different injection systems, looking particularly at the distributor pump, unit injection system and Common Rail system. Based on the results of these investigations, the Common Rail system was selected. The tests presented in this paper were performed on a single-cylinder engine with Common Rail system. They focused on increased rail pressure in combination with different nozzle geometries. The results show significant benefits in NOx/smoke trade off at part load conditions with high EGR rate.
Technical Paper

Life Cycle Engineering as a Tool for Design for Environment

2000-04-26
2000-01-1491
Mercedes-Benz at DaimlerChrysler has been developing and applying Life-Cycle-Engineering (LCE) and Life-Cycle-Assessment (LCA) since almost 10 years. Extensive experience and know-how has been gained by two complete car LCAs and more than 100 LCAs for parts. According to our experience LCA/LCE is most effectively and efficiently used to support the development of new products. One of DaimlerChrysler's Environmental Guidelines includes a statement, that our approach to environmentally acceptable design covers the entire product spectrum of the DaimlerChrysler Group, taking into account the product life cycle from design through disposal or recycling. The organisation of environmental management at DaimlerChrysler has a distinct structure of tasks: the central Environmental Protection Division coordinates all organisation/ plant related aspects, while all product related aspects are the responsibility of the divisonal business units.
Technical Paper

Quantitative Laser Diagnostic Studies of the NO Distribution in a DI Diesel Engine with PLN and CR Injection Systems

2001-09-24
2001-01-3500
The NO distribution in a directly-injected Diesel engine with realistic combustion chamber geometry was investigated with laser-induced fluorescence (LIF) imaging with KrF excimer laser excitation. The highest possible level of selectivity has been ensured using spectrally resolved LIF investigations inside the Diesel engine. To minimize interference from both, oxygen and polycyclic aromatic hydrocarbon (PAH) LIF the NO signal was detected around 237 nm, blue-shifted compared to the excitation wavelength resulting in a background contribution below 10% at the earliest detection timing possible in the engine under study (20°ca after top dead center, TDC). The in-cylinder NO LIF intensities were compared for different injection systems and operating conditions and correlated to variations in pressure traces and soot temperature measurements.
Technical Paper

Studies on Enhanced CVS Technology to Achieve SULEV Certification

2002-03-04
2002-01-0048
For the measurement of exhaust emissions, Constant Volume Sampling (CVS) technology is recommended by legislation and has proven its practical capability in the past. However, the introduction of new low emission standards has raised questions regarding the accuracy and variability of the CVS system when measuring very low emission levels. This paper will show that CVS has the potential to achieve sufficient precision for certification of SULEV concepts. Thus, there is no need for the introduction of new test methods involving high cost. An analysis of the CVS basic equations indicates the importance of the Dilution Factor (DF) for calculating true mass emissions. A test series will demonstrate that, by adjusting the dilution and using state of the art analyzers, the consistency of exhaust results is comparable with those of LEV concepts, measured with conventional CVS systems and former standard analyzers.
Technical Paper

Utilization of Advanced Three-Way Catalyst Formulations on Ceramic Ultra Thin Wall Substrates for Future Legislation

2002-03-04
2002-01-0349
The LEV II and SULEV/PZEV emission standards legislated by the US EPA and the Californian ARB will require continuous reduction in the vehicles' emission over the next several years. Similar requirements are under discussion in the European Union (EU) in the EU Stage V program. These future emission standards will require a more efficient after treatment device that exhibits high activity and excellent durabilty over an extended lifetime. The present study summarizes the findings of a joint development program targeting such demanding future emission challenges, which can only be met by a close and intensive co-operation of the individual expert teams. The use of active systems, e.g. HC-adsorber or electrically heated light-off catalysts, was not considered in this study. The following parameters were investigated in detail: The development of a high-tech three-way catalyst technology is described being tailored for applications on ultra thin wall ceramic substrates (UTWS).
X