Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Microstructure and Mechanical Properties of Welded Thermoplastics

2004-03-08
2004-01-0732
Thermoplastics have been used increasingly for automobile components for both interior and under-the-hood applications. The plastic parts are made through various molding process such as compression molding, injection molding and blow molding. For parts with large or complicated geometry, small portions of the part may have to be molded first, then joined together using a welding process. The welded regions usually exhibit inhomogeneous and inferior mechanical performance compared to the bulk regions due to the differences in thermal history. The microstructures and mechanical properties of welded thermoplastics have been examined using hot-plate welded polyethylene. The specimens are prepared at various thermal conditions to simulate the real welding process. The thermal properties in welds are monitored using DSC (Differential Scanning Calorimetry) and the crystallinities are calculated.
Technical Paper

On the Use of Spatial Transmissibility to Evaluate the NVH Performance of Engine Cover Assembly

2002-03-04
2002-01-0458
In the present study, the NVH performance of an engine valve cover assembly is analyzed by the use of “spatial transmissibility (TR)”. It is a measure of the spatial response of the cover relative to the spatial response of the underlying structure to which it is connected. A prototyped engine valve cover assembly is examined. The cover transmissibility is computed through the finite element method and also measured by experimental testing. Various isolation systems have been examined and different cover materials have been investigated, including magnesium and thermosetting plastic. The transmissibility provides a strategy for evaluating the NVH characteristic of engine cover assembly in a much more timely, cost-effective manner, while the product is still in the early conceptual stage.
Technical Paper

Acoustic Analysis of Isolated Engine Valve Covers

2003-05-05
2003-01-1674
The powertrain engine is a major source of vibration and noise in automotive vehicles. Among the powertrain components, the valve cover has been identified as one of the main noise contributors due to its large radiating surface and thin shell-like structure. There has been an increasing demand for rapid assessment of the valve cover noise level in the early product design stages. The present study analyzes the radiated sound pressure level (SPL) of a valve cover assembly using the finite element method (FEM). The analysis is first performed using a fully coupled structural-acoustic approach. In this case the solid structure is directly coupled to the enclosed and surrounding air in a single analysis, and the structural and acoustic fields are solved simultaneously. In the next approach, the analysis is performed in a sequential manner, using a submodeling technique. First, the structural vibration of the cover is analyzed in the absence of the surrounding air.
Technical Paper

Sound Radiation of Engine Covers With Acoustic Infinite Element Method

2005-05-16
2005-01-2449
The engine valve cover is known to be major contributor to powertrain noise due to its large surface area and relatively small thickness. Thus, the acoustic analysis of the valve cover has become one of the key steps in the design process. The present paper describes an acoustic infinite element approach to model the sound radiation of the valve cover. The valve cover bolted to the engine block behaves like a vibrating membrane in an acoustic medium of infinite extent. Typically, the effect of the infinite medium is modeled using either the boundary element method (BEM), or by specifying an equivalent boundary impedance on the terminating surface of an acoustic finite element mesh (NRBC). In this paper, a third method is introduced, wherein the boundary impedances are replaced by acoustic infinite elements. The methodology is presented using two different models. In the first model, a cover with a geometrically simple shape is analyzed.
Technical Paper

Spatial Transmissibility of Plastic Cylinder-Head Covers

2005-04-11
2005-01-1515
The transmissibility technique has been traditionally used for evaluating the NVH performance of isolated, rigid structures such as the elastomer mount isolated automobile engine. The transmissibility quantity provides information on how a structure reduces vibration as subjected to dynamic loading and thereby attenuates noise. In the present study, the transmissibility is applied to a non-rigid, plastic structure - the engine cylinder-head cover module. The cover module includes primarily a thin, plate-like cover and the elastomer isolation system. At low frequencies, the cover will behave as a rigid mass and thus display a major peak at its resonant frequency. At high frequencies, the cover will vibrate as a flexible panel and thus display multiple peaks with magnitudes differing from point to point across the cover surface. As a result, the transmissibility calculated would have a spatial resolution, called the spatial transmissibility.
X