Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Role of Zirconium in Novel Three-Way Catalysts

Zirconium dioxide (zirconia) is a well-known material often being a major component in the washcoat systems of three-way catalysts (TWC) and diesel oxidation catalysts. One important characteristic of zirconia containing washcoats is an improved aging stability which is required to meet the more and more stringent emission standards. In the last few years the utilization of zirconia became even more important - especially for high sophisticated three-way washcoat systems. This was due to the development of high temperature stable oxygen storage components, containing cerium dioxide (ceria) in combination with different other oxides - one very promising candidate being zirconia. In the present work the results of a research program are discussed, focusing on the influence of zirconia in combination with ceria and additional rare earth promoters on the stability of the oxygen storage characteristics.
Technical Paper

Diesel Particulate Emissions of Passenger Cars - New Insights into Structural Changes During the Process of Exhaust Aftertreatment Using Diesel Oxidation Catalysts

Diesel particulate mass emissions and their corresponding size distributions have been investigated on a diesel passenger car at steady state conditions using standard filters and a cascade impactor. These tests have been carried out at two different engine operating conditions (2100 rpm, 2.7 and 13.3 kW, respectively) corresponding to low and high exhaust gas temperatures. Two diesel fuels differing in their sulfur content (150 ppm and 2500 ppm S) have been used for these investigations. The particulate size distribution after diesel oxidation catalyst was found to be affected by the sulfur content of the diesel fuel and by the exhaust gas temperature. Interpretations of these results on a mechanistic basis are given. The diesel particulate emission studies have been extended to dynamic vehicle tests.
Technical Paper

Catalytic NOx Reduction on a Passenger Car Diesel Common Rail Engine

The awareness concerning environmental issues and the economical need for fuel savings leads to the introduction of new, highly efficient Diesel engines for passenger cars. An engine with common rail injection system could meet this target and, with the help of an advanced diesel exhaust aftertreatment system also fulfilled the new legislative emission regulations. Besides the efficient oxidation of carbon monoxide (CO), hydrocarbons (HC) and diesel particulates, such a system also requires a moderate reduction efficiency for nitrogen oxides (NOx) under excess oxygen conditions. The present paper illustrates the further progress in catalytic NOx-reduction under excess of oxygen by hydrocarbon enrichment using the common rail injection system.
Technical Paper

A New Generation of Diesel Oxidation Catalysts

An overview is given on the state of the art of a new catalytic exhaust gas aftertreatment device for diesel engines. The function of a precious metal based, flow-through type diesel oxidation catalyst is explained. Much attention is paid to the durability of the diesel oxidation catalyst and especially to the influence of poisoning elements on the catalytic activity. Detailed data on the interaction of poisoning elements such as sulfur, zinc and phosphorus with the catalytic active sites are given. Finally it is demonstrated that it is possible to meet the stringent emission standards for diesel passenger cars in Europe with a new catalyst generation over 80.000 km AMA aging.