Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Journal Article

Technical Issues of 100Mbit/s Ethernet Transmission based on Standard Automotive Wiring Components

2014-04-01
2014-01-0249
The presentation describes a technical solution for 100 Mbit/s Ethernet Data transmission cabling. This solution considers the specific requirements of automotive wiring harness and manufacturing. It bases on standard automotive connectors and headers. Currently the development of automotive electronic architecture considers central ECU or data backbone structure for the upcoming EE architecture (e. g. single ECU for network; SEN). For these structures solid and cost effective data backbone solutions are essential. Ethernet, a wide distributed and well-known bus system for office and industry data distribution provide a wide range of software tools and many physical layer solutions. Several cabling systems are available. Based on this we propose a solution for automotive application.
Journal Article

New Compact, High Efficiency, Variable Displacement Compressor for the Small Vehicle Segment

2014-04-01
2014-01-0630
As fuel prices continue to rise automotive manufacturers continue to push their suppliers to provide technology that improves the potential fuel efficiency of their applications. In addition there is an increasing trend towards smaller, lighter and more compact vehicles to mitigate the automotive carbon footprint. These movements necessitated the development of a new compact, low mass, variable displacement compressor to match the requirements for these smaller and more efficient vehicles. The new Delphi MVC, or Miniature Variable Compressor, meets these requirements by integrating the high efficiency of our latest swashplate variable compressor design into a compact and lightweight package. This design can be offered in a range of displacements from 80 to 100cc and can be offered as either internally or externally controlled to support the customer's needs.
Technical Paper

Designed Experiment to Evaluate the Canning Strength of Various High Cell Density / Ultra Thin Wall Ceramic Monoliths

2001-09-24
2001-01-3663
High cell density (HCD) (≥ 600 cpsi) and /or ultra thin wall (UTW) (≤ 4 mil) extruded ceramic monolith substrates are being used in many new automotive catalyst applications because they offer (1) increased geometric surface area, (2) lower thermal mass, (3) increased open frontal area and (4) higher heat and mass transfer rates. Delphi has shown in previous papers how to use the effectiveness, NTU theory, to optimize the various benefits of these HCD / UTW catalysts. A primary disadvantage of these low solid fraction substrates is their reduced structural strength, as measured by a 3-D hydrostatic (isostatic) test. The weakest of these new substrates is only 10 to 20% as strong as standard 400 × 6.5 substrates. Improved converter assembly methods with lower, more uniform forces will likely be required to successfully assemble converters with such weak substrates in production.
Technical Paper

Development of a Low-Noise High Pressure Fuel Pump for GDi Engine Applications

2013-04-08
2013-01-0253
Fuel systems associated with Gasoline Direct Injection (GDi) engines operate at pressures significantly higher than Port Fuel Injection (PFI) engine fuel systems. Because of these higher pressures, GDi fuel systems require a high pressure fuel pump in addition to the conventional fuel tank lift pump. Such pumps deliver fuel at high pressure to the injectors multiple times per engine cycle. With this extra hardware and repetitive pressurization events, vehicles equipped with GDi fuel systems typically emit higher levels of audible noise than those equipped with PFI fuel systems. A common technique employed to cope with pump noise is to cover or encase the pump in an acoustic insulator, however this method does not address the root causes of the noise. To contend with the consumer complaint of GDi system noise, Delphi and Magneti Marelli have jointly developed a high pressure fuel pump with reduced audible output by concentrating on sources of noise generation within the pump itself.
Technical Paper

Primary Atomization of a GDi Multi-Hole Plume Using VOF-LES Method

2014-04-01
2014-01-1125
This study is concerned with quantitative analysis of the primary atomization, regarding the droplet size-velocity distribution function, of a multi-hole GDi plume through application of the Volume-of-Fluid Large Eddy Simulation (VOF-LES) method. The distinguishing feature of this study is the inclusion of an accurate seat /nozzle flow domain into the simulation. A VOF-LES study of the seat-nozzle flow and the near-field primary atomization of a single plume of a GDi multi-hole seat is performed. The geometry pertains to a purpose-built 3-hole GDi seat with three identical flow hole and counter-bore nozzles, arranged with 120° circumferential spacing. The VOF-LES prediction of the jet primary breakup structure and near-field macroscale is compared with spray imaging data. The droplet size and velocity distributions within a 4mm vicinity of the nozzle are analyzed. The results show production of a wide droplet size distribution through the jet primary atomization.
Technical Paper

Innovative Sprays and Particulate Reduction with GDi Injectors

2014-04-01
2014-01-1441
Innovative nozzle hole shapes for inwardly opening multi-hole gasoline direct injectors offer opportunities for improved mixture formation and particulate emissions reduction. Compared to increased fuel pressure, an alternative associated with higher system costs and increased pumping work, nozzle hole shaping simply requires changes to the injector nozzle shape and may have the potential to meet Euro 6 particulate regulations at today's 200 bar operating pressure. Using advanced laser drilling technology, injectors with non-round nozzle holes were built and tested on a single-cylinder engine with a centrally-mounted injector location. Particulate emissions were measured and coking deposits were imaged over time at several operating fuel pressures. This paper presents spray analysis and engine test results showing the potential benefits of alternative non-round nozzle holes in reducing particulate emissions and enhancing robustness to coking with various operating fuel pressures.
Technical Paper

GDi Nozzle Parameter Studies Using LES and Spray Imaging Methods

2014-04-01
2014-01-1434
Development of in-cylinder spray targeting, plume penetration and atomization of the gasoline direct-injection (GDi) multi-hole injector is a critical component of combustion developments, especially in the context of the engine downsizing and turbo-charging trend that has been adopted in order to achieve the European target CO2, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards the optimization of injector nozzle designs in order to improve spray characteristics. Development of accurate predictive models is desired to understand the impact of nozzle design parameters as well as the underlying physical fluid dynamic mechanisms resulting in the injector spray characteristics. This publication reports Large Eddy Simulation (LES) analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries.
Technical Paper

Application of 48 Volt for Mild Hybrid Vehicles and High Power Loads

2014-04-01
2014-01-1790
During the evolution of Hybrid vehicles as well as electrical vehicles the need for an additional Voltage level was defined for the utilization of high power loads like electrical compressors, electrical heaters as well as power steering and electrical pumps. The main systems benefit is the generation of approximately 12 kW electrical power by a traditional belt driven Generator. This allows boost function for acceleration and recuperation for mild hybrid vehicles with the target to reduce up to 15% CO2 by keeping the traditional thermal based engines. Delphi has developed systems and components that meet the special 48 Volt related electrical requirements on arcing, hot plugging and corrosion. Our benefit is the long term expertise within the total system know how and the derived technical specification and needs.
Technical Paper

Improving the Fuel Efficiency of Mobile A/C Systems with Variable Displacement Compressors

2014-04-01
2014-01-0700
Variable displacement compressors have proven to be more energy efficient than the equivalent compressor with fixed displacement for mobile A/C applications. Variable displacement compressors de-stroke rather than cycle to prevent the evaporator from freezing. Cycling an internally controlled variable compressor is counter intuitive, yet results in a 15-20% reduction in the energy used by the compressor as demonstrated by tests on multiple vehicle applications. Externally controlled variable compressors have the highest energy efficiency and extending cycling to these compressors during cool temperatures reduces the compressor energy consumption by 10%.
Technical Paper

Protecting Development Engines during Controls Development and Calibration

2014-04-01
2014-01-1172
Advanced development engines are one-of-a-kind and expensive and generally have few, if any, spare parts available. These engines are particularly vulnerable to damage during control and calibration development due to unintended control actions from newly-generated algorithms, errant operator control commands, or lack of understanding of control limits for safe operation. Engine damage can result in significant program delays and expenses. Delphi is developing control systems and calibrations for the vehicle implementation of an experimental engine concept which incorporates a new high efficiency combustion process. Many of the algorithms within the control structure are new and untested, and therefore represent significant risk to these engines. The large amount of data displayed on computer test control screens makes human monitoring of all parameters nearly impossible, especially when display windows are layered on top of one another.
Technical Paper

F2E - Ultra High Pressure Distributed Pump Common Rail System

2014-04-01
2014-01-1440
Delphi Diesel Systems' 2700bar Proven F2E Distributed Pump Common Rail System (DPCRS) has been developed to meet the requirements of Euro VI and future emissions legislation and is now in volume production in Heavy Duty Vehicles. Incorporating a number of ground breaking new technologies, the system offers numerous performance advantages. F2E provides full common rail functionality for camshaft driven Fuel Injection Equipment (FIE) engines with minimum modification. By delivering precise and accurate control of multiple injections at maximum rail pressure across all engine operating conditions, the system minimizes the demands on exhaust after treatment systems. Additionally F2E provides real time flexible capacity by employing a unique method of pump fuel metering, enabling the most efficient and accurate transient control of rail pressure combined with the low NVH and optimised efficiency.
X