Refine Your Search

Topic

Author

Search Results

Journal Article

Real-time Sensing of Particulate Matter in a Vehicle Exhaust System

2017-03-28
2017-01-1639
Onboard diagnostic regulations require performance monitoring of diesel particulate filters used in vehicle aftertreatment systems. Delphi has developed a particulate matter (PM) sensor to perform this function. The objective of this sensor is to monitor the soot (PM) concentration in the exhaust downstream of the diesel particulate filter which provides a means to calculate filter efficiency. The particulate matter sensor monitors the deposition of soot on its internal sensing element by measuring the resistance of the deposit. Correlations are established between the soot resistance and soot mass deposited on the sensing element. Currently, the sensor provides the time interval between sensor regeneration cycles, which, with the knowledge of the exhaust gas flow parameters, is correlated to the average soot concentration.
Technical Paper

Thermally-Induced Microstructural Changes in a Three-Way Automotive Catalyst

1997-10-01
972905
The use of advanced electron microscopy techniques to characterize both the bulk and near-atomic level microstructural evolution of catalyst materials during different dynamometer/vehicle aging cycles is an integral part of understanding catalyst deactivation. The study described here was undertaken to evaluate thermally-induced microstructural changes which caused the progressive loss of catalyst performance in a three-way automotive catalyst. Several different catalyst processing variables, for example changing the washcoat ceria content, were also evaluated as a function of aging cycle and thermal history. A number of thermally-induced microstructural changes were identified using high resolution electron microscopy techniques that contributed to the deactivation of the catalyst, including sintering of all washcoat constituents, γ-alumina transforming to α-, β-, and δ-alumina, precious metal redistribution, and constituent encapsulation.
Technical Paper

Using the Six Sigma Methodology for Process Variation Reduction

2007-11-28
2007-01-2872
This paper is about the use of the Six Sigma Methodology, to solve variation problems in the manufacture area, at one of the Delphi Automotive Systems unit that manufacturer electrical harness. The DMAIC framework was followed, the improvements were done, eliminating the rots causes, and the use of Six Sigma methodology, was showed very efficient in solve problems. The methodology power, is in using a structured frame work, the DMAIC (Define-Measure-Analyze-Improve-Control), completing by quality quality tools (Pareto Chart, Five Why's, Cause and Effect Diagram) and statistical analyses, for example: variance analyses, hypotheses tests and Design of Experiments.
Technical Paper

Automotive Miniaturization Trend: Challenges for Wiring Harness Manufacturing

2010-10-06
2010-36-0160
One of the most evident trends in automotive sector is miniaturization. It is related to considerable benefits due to the potential of mass reduction, cost reduction and efficiency improvement. It involves many different automobile components and most of them are facing challenges to achieve the targets defined by car makers and final consumers. Specifically for wiring harness, it seems to be many manufacturing and process challenges to be surpassed in order to fully perceive the benefits expected with miniaturization, internally and externally. So this article aims to present an overview of literature as well as reporting of experts on this issue mentioning some of the challenges that global automotive wiring harness manufacturers are facing. Subjects as assembly automation, terminal connection and small gauge cables are discussed in the article and also a general overview of how those problems are being addressed in order to meet customer requirements.
Technical Paper

The Solution for Steady State Temperature Distribution in Monolithic Catalytic Converters

2001-03-05
2001-01-0941
This paper presents a simplified thermal model for round catalytic converters in steady state operation. Using this model, the analytic solution for the temperature distribution in the monolithic substrate is obtained. This analytic solution in the substrate is, then, combined with those in the intumescent mat [1] and the metal shell to obtain the temperature profile in the radial direction of the converter except for three unknown temperatures at the three material interfaces, which can be solved using an Excel application program. This analytical temperature solution facilitates the studies of the effects of various design parameters such as the exhaust gas temperature, exhaust gas flow rate, substrate cell geometry, converter dimensions, and ambient temperature and flow, etc.
Technical Paper

Development Experience with Steer-by-Wire

2001-08-20
2001-01-2479
Recent advances in dependable embedded system technology, as well as continuing demand for improved handling and passive and active safety improvements, have led vehicle manufacturers and suppliers to actively pursue development programs in computer-controlled, by-wire subsystems. These subsystems include steer-by-wire and brake-by-wire, and are composed of mechanically de-coupled sets of actuators and controllers connected through multiplexed, in-vehicle computer networks; there is no mechanical link to the driver. This paper addresses fundamental benefits and issues of steer-by-wire, especially those related to automated vehicle control and steering feel quality as perceived by the driver.
Technical Paper

High Frequency Effects on Localization and Sound Perception in a Small Acoustic Space

2002-03-04
2002-01-0117
As compared to home audio, the automobile has a different spatial and spectral distribution of sound. This can cause stereo images to blur or shift due to conflicting localization cues. The impact of interaural time and level differences is discussed, along with frequency-selective pinna and head cues. Review of the literature shows that our poorest localization is for mid frequencies (∼2kHz). Yet in an automobile, low frequencies are severely relocated with a minimum effect on fidelity. It is suggested this is because middle frequencies dominate the perception and localization of sound. Therefore, some high frequency information might also be relocated.
Technical Paper

Open-Interface Definitions for Automotive Systems1 Application to a Brake by Wire System

2002-03-04
2002-01-0267
Today automotive system suppliers develop more-or-less independent systems, such as brake, power steering and suspension systems. In the future, car manufacturers like Volvo will build up vehicle control systems combining their own algorithms with algorithms provided by automotive system suppliers. Standardization of interfaces to actuators, sensors and functions is an important enabler for this vision and will have major consequences for functionality, prices and lead times, and thus affects both vehicle manufacturers and automotive suppliers. The investigation of the level of appropriate interfaces, as part of the European BRAKE project, is described here. Potential problems and consequences are discussed from both a technical and a business perspective. This paper provides a background on BRAKE and on the functional decomposition upon which the interface definitions are based. Finally, the interface definitions for brake system functionality are given.
Technical Paper

Implications of 3-D Internal Flow Simulation on the Design of Inward-Opening Pressure-Swirl Injectors

2002-10-21
2002-01-2698
A parametric study on the effects of critical injector design parameters of inwardly-opening pressure-swirl injectors was carried out using 3-D internal flow simulations. The pressure variation and the integrated momentum flux across the injector, as well as the flow distributions and turbulence structure at the nozzle exit were analyzed. The critical flow effects on the injector design identified are the swirler efficiency, discharge coefficient, and turbulence breakup effects on the spray structure. The study shows that as a unique class of injectors, pressure-swirl injectors is complicated in fluid mechanics and not sufficiently characterized or optimized. The swirler efficiency is characterized in terms of the trade-off relationship between the swirl-to-axial momentum-flux ratio and pressure drop across the swirler. The results show that swirl number is inversely proportional to discharge coefficient, and that hole diameter and swirler height is the most dominant parameters.
Technical Paper

Diagnostic Strategies for Advanced Automotive Systems

2002-10-21
2002-21-0024
In recent years, the desire for improved vehicle performance, reliability and safety have increased the electrical content and its complexity in vehicles. Advanced automotive systems integrate sensors, controllers, actuators and communication networks. To maintain safety and reliability, a comprehensive system of diagnostics and physical and analytic redundancy are used. In some cases, diagnostic strategies based on analytical redundancy can provide detection, as well as fault-tolerance, and may provide benefits in cost, packaging, flexibility and reusability. This paper discusses a range of diagnostic methods and their applicability to advanced automotive systems such as X-by-Wire. It will also show the reduction to practice of an advanced analytical technique for an automotive application.
Technical Paper

Impact of Alkali Metals on the Performance and Mechanical Properties of NOx Adsorber Catalysts

2002-03-04
2002-01-0734
Performance of two types of NOx adsorber catalysts, one based on Ba and the other based on Ba with alkali metals, was compared fresh and after thermal aging. Incorporation of sodium(Na), potassium(K) and cesium(Cs) into NOx adsorber washcoat containing barium significantly increases the NOx conversions in the temperature range of 350-600°C over that of the alkali metal free NOx adsorber catalysts. NOx performance benefit and HC performance penalty were observed on both engine dynamometer and vehicle tests for the “Ba+alkali metals” NOx adsorber catalysts. “Ba+alkali metals” NOx adsorber catalysts also demonstrate superior sulfur resistance with better NOx performance after repeated sulfur poisonings and desulfations over the “Ba based” NOx adsorber catalysts.
Technical Paper

Single Crystal Silicon Low-g Acceleration Sensor

2002-03-04
2002-01-1080
A single-crystal silicon capacitive acceleration sensor for low-g applications has been developed. The sensor element itself is formed entirely from single crystal silicon, giving it exceptional stability over time and temperature and excellent shock resistance. The sensor is produced using low-cost, high volume processing, test and calibration. The sensor integrated circuit (IC) contains a proofmass which moves in response to applied accelerations. The position of the proofmass is capacitively detected and processed by an interface IC. The sensor/interface IC system is packaged in a small outline IC (SOIC) package for printed circuit board mounting. The module is designed to measure full scale accelerations in the 0.75g to 3g range to suit a variety of automotive, industrial and consumer applications
Technical Paper

42V Power Supply Systems Impact for Emerging Market Projects

2005-11-22
2005-01-4115
This paper provides a survey about the consequences of a 42V Power Supply System for new vehicle projects, specially, its impact on directed project for Emerging Markets. At a first moment, it will be described new systems and its demand for additional power availability for future projects, such as electrical steering and brake systems; electrical air conditioning compressor; and electrical water and oil pumps. Following this subject, it will be presented possible alternatives for 14/42V Power Supply Systems, and also its impact over Power and Signal Distribution System components, such as connector, terminals, cables, relays, electrical centers, etc. Finally, the previous presented scenarios will be analyzed under a point of view for the Emerging Market demand for such new proposed systems, looking for best alternative driven.
Technical Paper

Energy Harvesting as Strategy for Reducing Vehicles Emissions

2012-10-02
2012-36-0114
In vehicular mobility context, it is extremely important for the environmental sustainability that the available energy will be used as efficiently as possible, both in the use of internal combustion engines (ICE) as powertrain, as well in the application of Hybrid and Electric Vehicle Motors (HEV/EV). In this comparison, ICE has a lower efficiency when compared to electric motors, wasting much of the potential energy of the fuel in form of heat and noise. On the other hand, the electric vehicles face limitation in autonomy and recharge time, demanding for a more efficient use of energy stored in batteries. This study aims to present emerging technologies for reuse of energy within the automotive context, originally known as “Energy Harvesting” and “Renewable Energies”.
Technical Paper

USE OF CFD SIMULATION TO PREDICT CAVITATION IN AUTOMOTIVE HEATER CORES

2005-11-22
2005-01-4027
Several heater cores failed due to erosion by cavitation. After analysis, most of failures were explained by the presence of impurities in the heater core. It was then decided with the customer to use CFD simulation in order to prove that the cavitation was not caused by design concept of the tank. In this paper, we present the results of heater core simulations done in 2D and in 3D with Fluent. The objective is to simulate the pressure and velocity distribution within the heater core and to verify if the zones of low pressure are below the saturation vapour pressure of the fluid causing cavitation. In these areas, the deterioration of the tubes might occur due to erosion by cavitation.
Technical Paper

Diagnostic Development for an Electric Power Steering System

2000-03-06
2000-01-0819
Electric power steering (EPS) is an advanced steering system that uses an electric motor to provide steering assist. Being a new technology it lacks the extensive operational history of conventional steering systems. Also conventional systems cannot be used to command an output independent of the driver input. In contrast EPS, by means of an electric motor, could be used to do so. As a result EPS systems may have additional failure modes, which need to be studied. In this paper we will consider the requirements for successful EPS operation. The steps required to develop diagnostics based on the requirements are also discussed. The results of this paper have been implemented in various EPS-based programs.
Technical Paper

A Study of a Fast Light-Off Planar Oxygen Sensor Application for Exhaust Emissions Reduction

2000-03-06
2000-01-0888
It is well known that hydrocarbon reduction during a cold start is a major issue in achieving ultra low emissions standards. This paper describes one of the possible approaches for reducing the cold-start hydrocarbon emissions by using a fast “light-off” planar oxygen sensor. The goal of this study was to verify the operation characteristics of Delphi's fast “light-off” planar oxygen sensor's (INTELLEK OSP) operating characteristics and the closed-loop performance for achieving improved hydrocarbon control for stringent emission standards. Tests were conducted in open-loop and closed-loop mode under steady and transient conditions using a 1996 model year 2.4-liter DOHC in-line 4-cylinder engine with a close-coupled catalytic converter. Overall performance of the OSP showed relatively quick reaction time to reach the operating temperature.
Technical Paper

Optimization of Oxygen Sensor

2000-03-06
2000-01-1364
Optimization of the mechanical aspects of a heated conical oxygen sensor for desired performances, such as low heater power, good poison resistance, fast light-off, and broad temperature range, etc. was achieved with computer modeling. CFD analysis was used to model the flow field in and around a sensor in an exhaust pipe to predict the convection coefficients, poisoning, and switching time. Heat transfer analysis coupled with electrical heating was applied to predict temperature and light-off time. Results of the optimization are illustrated, with good agreements between modeling and testing.
Technical Paper

Evaluation of Corona Reactors of Several Geometries for a Plasma Assisted Nitrogen Oxide Emission Reduction Device

2000-10-16
2000-01-2899
Proposed vehicle emissions regulations for the near future have prompted automotive manufactures and component suppliers to focus heavily on developing more efficient exhaust aftertreatment devices to lower emissions from spark and compression ignition engines. One of the primary pollutants from lean-burn engines, especially from diesels, are oxides of nitrogen (NOx). Current three-way catalytic converters will not have adequate performance to meet future emission reduction requirements. Therefore, there is a need for researchers and engineers to develop efficient exhaust aftertreatment devices that will reduce NOx emissions from lean-burn engines. These devices must have very high conversion of NOx gases, be unaffected by exhaust-gas impurity such as sulfur, and have minimal impact on vehicle operations and fuel economy. An effective technology for NOx control that is currently receiving a lot of attention is a non-thermal plasma system.
Technical Paper

Application of Non-Thermal Plasma Assisted Catalyst Technology for Diesel Engine Emission Reduction

2000-08-21
2000-01-3088
With new legislation and federal regulation for vehicle emission levels, automotive and truck manufacturers have been prompted to focus on emission control technologies that limit the level of exhaust pollutants. One of the primary pollutants, especially from diesel engines, is oxides of nitrogen (NOx). One possible solution to this pollution challenge is to design a more efficient internal combustion engine, which would require better engine operating parameter controls. However, there are limitations associated with such tight engine management. This need has led researchers and engineers to focus on the development of exhaust aftertreatment devices that will reduce NOx emissions with current diesel engines. An optimum aftertreatment device must be unaffected by exhaust-gas impurity poisoning such as sulfur products, and must have minimal impact on vehicle operations and fuel economy.
X