Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Technical Paper

Enhanced Vehicle Stability with Engine Drag Control

2002-03-04
2002-01-1217
This paper describes the development and implementation of an Engine Drag Control algorithm to improve vehicle stability performance. Engine drag can occur on low and high coefficient surfaces when the driver suddenly releases the throttle. If the engine drag force becomes larger than the frictional force between the tire and the road, the tires will break loose from the surface and slip. This could induce vehicle instability especially with rear drive vehicles on low-coefficient surfaces. The EDC algorithm has been developed to provide accurate control of the wheels. EDC will help reduce the yaw rate of the vehicle and thus achieve greater vehicle stability. The paper also presents methods used to test the robustness of such a system. The purpose of the testing was to ensure that there would be no false activations of EDC under normal driving conditions and also to ensure that, when the system is active, it is mostly transparent to the driver.
Technical Paper

Single Crystal Silicon Low-g Acceleration Sensor

2002-03-04
2002-01-1080
A single-crystal silicon capacitive acceleration sensor for low-g applications has been developed. The sensor element itself is formed entirely from single crystal silicon, giving it exceptional stability over time and temperature and excellent shock resistance. The sensor is produced using low-cost, high volume processing, test and calibration. The sensor integrated circuit (IC) contains a proofmass which moves in response to applied accelerations. The position of the proofmass is capacitively detected and processed by an interface IC. The sensor/interface IC system is packaged in a small outline IC (SOIC) package for printed circuit board mounting. The module is designed to measure full scale accelerations in the 0.75g to 3g range to suit a variety of automotive, industrial and consumer applications
Technical Paper

Zero Resistance Technology (ZRT)

2005-11-22
2005-01-4109
Delphi's Zero Resistance Technology (ZRT) is a revolutionary new product/process that enables the reduction of mass and volume from a traditional wiring assembly. ZRT is defined as a minimal (zero) resistance change over time. The ZRT product is an electrical/electronic connection system which provides a viable solution for high density and limited space wiring applications. The ZRT process is a semi-automated wiring harness manufacturing system with flexibility to produce harnesses to the customer demand.
Technical Paper

Resistance Welding for Automotive Wiring Harness Connection - Small Gauge Cables

2012-10-02
2012-36-0153
Miniaturization is an important trend in many technology segments, once it can enable innovative applications generating new markets. This trend was begun in electronics industry after World War II and has spawned changes into automotive sector also. For Automotive Wiring Harness, miniaturization is clearly presented in most of the components, mainly because of its benefits like the potential of mass reduction, cost reduction and efficiency improvement. Furthermore the main voice of customer points to cable gauge reduction that represents a considerable challenge for connection manufacturing process due to quality control limitations presented by conventional crimp process for 0,35 [mm₂] cables and smaller. According to that, the scope of this article is to present, in details, a manufacturing process optimization for an alternative and more robust technology of joining copper stranded cables to tin brass terminals used on automotive wiring harness, Resistance Welding.
Technical Paper

Use of CFD Simulation to Predict Fan Power and Airflow Pattern Inside the Climatic Chamber

2004-11-16
2004-01-3254
For A/C and cooling systems development is usual send vehicles to US or Europe for wind tunnel tests, witch is expensive and has a long lead-time. Here in Brazil Delphi has at the Piracicaba Technical Center a chamber equipped with temperature control and chassis dynamometer. There is a up-grade project for it that consist in add ducts with fans inside the chamber that will get air from the chamber, already in the right temperature, accelerate and homogenate the air flow and blow it out direct to the front end of the vehicle. For development purposes may be possible eliminate totally the necessity of sending vehicle abroad. It was then decided to use CFD simulation to predict firstly the required fan power necessary to supply winds until 120 km/h at the front end of the vehicle and secondly predict the airflow pattern inside the chamber, considering chamber inlet air, chamber outlet air, exhaust outlet, duct outlet and flow pattern around the vehicle.
Technical Paper

An Engine Coolant Temperature Model and Application for Cooling System Diagnosis

2000-03-06
2000-01-0939
A coolant temperature model of an internal combustion engine has been formulated to meet the new On-Board Diagnostics II (OBD II) requirement for coolant temperature rationality. The model utilizes information available within the production Engine Control Module (ECM). The temperature prediction capability has been tested for various “real-world” driving conditions and cycles along with regulated drive cycles. The model can be calibrated to find the appropriate timing for initiation of a diagnostic algorithm for engine cooling system and Coolant Temperature Sensor (CTS) faults. A diagnostic scheme has been developed to detect and isolate various types of cooling system failures using engine soak time information available from a low power timer in the ECM.
Technical Paper

Optimization of Oxygen Sensor

2000-03-06
2000-01-1364
Optimization of the mechanical aspects of a heated conical oxygen sensor for desired performances, such as low heater power, good poison resistance, fast light-off, and broad temperature range, etc. was achieved with computer modeling. CFD analysis was used to model the flow field in and around a sensor in an exhaust pipe to predict the convection coefficients, poisoning, and switching time. Heat transfer analysis coupled with electrical heating was applied to predict temperature and light-off time. Results of the optimization are illustrated, with good agreements between modeling and testing.
Technical Paper

Powertrains of the Future: Reducing the Impact of Transportation on the Environment

1999-03-01
1999-01-0991
Tomorrow's winning powertrain solutions reside in those technology combinations providing optimized propulsion systems with zero emissions and no cost or performance penalty compared with today's vehicles. The recent Kyoto Protocol for CO2 reduction and the California Air Resources Board (CARB) thrust for zero emission vehicles along with the European Regulatory community, motivate car manufacturers to adopt new light body structures with low aerodynamic drag coefficients, low-rolling resistance and the highest efficiency powertrains. The environmental equation expresses car manufacturers aptitude and desire to create zero emission vehicles at acceptable levels of performance unlike limited range electrical powered vehicle products. The cheapest solution to the environmental equation remains the conventional internal combustion engine ($30 to $50 per kW).
Technical Paper

The Effect of Changes in Ambient and Coolant Radiator Inlet Temperatures and Coolant Flowrate on Specific Dissipation

2000-03-06
2000-01-0579
In this paper, a theoretical model for the calculation of Specific Dissipation (SD) was developed. Based on the model, the effect of ambient and coolant radiator inlet temperatures on SD has been predicted. Results indicate that the effect of ambient and coolant inlet temperature variation on SD is small (less than 2%) when ambient temperature varies between 10 and 50°C and coolant radiator inlet temperature between 60 and 120°C. The effect of coolant flowrate on SD is larger if there is a larger flowrate variation. Experimental results indicate that a 1 % variation at 1.0 L/s will cause about ±0.6% SD variation. Therefore the flowrate should be carefully controlled.
Technical Paper

Full Hybrid Electrical Vehicle Battery Pack System Design, CFD Simulation and Testing

2010-04-12
2010-01-1080
CFD analysis was performed using the FLUENT software to design the thermal system for a hybrid vehicle battery pack. The battery pack contained multiple modular battery elements, called bricks, and the inlet and outlet bus bars that electrically connected the bricks into a series string. The simulated thermal system was comprised of the vehicle cabin, seat cavity, inlet plenum, battery pack, a downstream centrifugal fan, and the vehicle trunk. The fan was modeled using a multiple reference frame approach. A full system analysis was done for airflow and thermal performance optimization to ensure the most uniform cell temperatures under all operating conditions. The mesh for the full system was about 13 million cells run on a 6-node HP cluster. A baseline design was first analyzed for fluid-thermal performance. Subsequently, multiple design iterations were run to create uniform airflow among all the individual bricks while minimizing parasitic pressure drop.
X