Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Dynamic Characteristics of a Mount Combining Viscous Fluid With Air-Spring

2007-05-15
2007-01-2360
A hydraulic excavator cab is mounted on a viscous mount. When the weight of the cab is heavy, the neutral position is depressed. Besides, at a large load, the cab receives compressive repulsion power of oil thereby restricting its damping ability. In addition, it is difficult to obtain an arbitrary damping performance separately. To overcome these problems, which combines the shear force due to viscous fluid with elastic force due to air-spring a mount, was invented. The neutral position of composite mount is adjustable by air-spring according to the weight. And viscous oil is not sealed up. So, viscous oil can flow at a large load. Therefore, it may not experience the repulsion force of oil in spite of a large load. Moreover, the generated elastic force is adjustable according to change of pressure in the air spring, and the generated damping force is adjustable according to change of viscous fluid's viscosity or volume.
Technical Paper

Examination of Digging Efficiency Considering Force Feedback for Hydraulic Excavators

2010-10-05
2010-01-1923
A high performance digging algorithm for a hydraulic excavator has not been established because the relationship between digging parameters and digging performance is complex. An examination process for a high-performance digging algorithm is proposed. In this paper, the digging efficiency is defined as the soil volume derived by the applied energy to drive the bucket in order to evaluate digging performance. The digging algorithm, which we study for high digging efficiency, decreases the reaction force to the bucket from the soil by moving the bucket upward when the reaction force exceeds a threshold during digging. Digging tests are performed with a miniature test device and a simulation model by two-dimensional distinct element methods (2D-DEM). The device and the simulation assess the effectiveness of the digging algorithm. It is quantitatively shown that the digging performance obtained by the feedback digging system is improved to prevent growing of reaction force.
Technical Paper

Construction of Sound Source Model for Diesel Engine Using New Method for Selecting Optimal Field Points in Inverse-Numerical Acoustic Analysis

2017-06-05
2017-01-1871
This paper describes new method for selecting optimal field points in Inverse-Numerical Acoustic analysis (INA), and its application to construction of a sound source model for diesel engines. INA identifies the surface vibration of a sound source by using acoustic transfer functions and actual sound pressures measured at field points located near the sound source. When measuring sound pressures with INA, it is necessary to determine the field point arrangement. Increased field points leads to longer test and analysis time. Therefore, guidelines for selecting the field point arrangement are needed to conduct INA efficiently. The authors focused on the standard deviations of distance between sound source elements and field points and proposed a new guideline for optimal field point selection in our past study. In that study, we verified the effectiveness of this guideline using a simple plate model.
X