Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Structural Design Considerations for the Storage of Liquid Hydrogen in a Space Vehicle

The S-IV and S-IVB stages for the Saturn vehicles were designed to utilize the high specific impulse of the liquid hydrogen - liquid oxygen propulsion system. The use of liquid hydrogen presented special structural problems that led to the development of the reinforced foam internal insulation and the sandwiched honeycomb common bulkhead. The major design problem in each case was the high thermal stress resulting from the steep thermal gradient across the depth of the structure. For the extreme temperatures involved the thermal stresses were very high and were dominant factors in establishing the designs.
Technical Paper

How High Should We Fly?

FLYING at altitude intensifies most problems, simplifies some, the author shows. Increasing operating altitude from 25,000 ft to well into the stratosphere lowers temperature more than 50 F, and reduces pressure to one-fifth the sea-level value. This complicates structural problems. It affects the hydraulic and control systems, electrical systems, cooling, and air conditioning, and increases the danger from failure of any of these essentials. Gusts and turbulence, on the other hand, are lessened by flying high. The author charts the extent of each of the problems, and shows how altitude economy gains make solutions imperative.
Technical Paper


THIS paper describes the operational and performance characteristics which will make the DC-8 jet transport capable of economical operation over both long- and short-range routes of reasonably high traffic density. It is shown, for example, that the effects of operation with one or two engines inoperative, the effect of high ambient air temperatures, and effects of flying at nonoptimum altitudes, while different from reciprocating-engine aircraft, will permit easy integration of the jet transport into existing airline operations. Furthermore, the jet transports will have such short take-off distances when carrying fuel sufficient for short and moderate ranges that most existing airport runways, now used for DC-6B and DC-7 operation, are of sufficient length for jet-transport operation.
Technical Paper

Recommended Practices for Use in the Measurement and Evaluation of Aircraft Neighborhood Noise Levels

SAE Committee A-21, Aircraft Exterior Noise Measurements, was formed in 1961 to develop recommended practices for use in the evaluation of aircraft noise as it relates to airport neighborhood annoyance problems. The general areas of interest to the committee include the measurement, propagation, prediction and subjective rating of aircraft noise. This paper discusses the evaluation of aircraft neighborhood noise levels and describes the subjective measures by which comparisons can be made. Included in the discussion are the recommended practices adopted by SAE and those that are being studied by Committee A-21.
Technical Paper

Fuselage Configuration Studies

Because of the rapid growth of air travel, both cargo and passenger, the payload capacity required for future transport aircraft is too great to be accommodated by fuselages of conventional configuration (that is, single-deck, single-aisle, up to 6 seats abreast). Fuselage design philosophy was therefore re-evaluated in a recent Douglas study, and this paper reviews some of the features of that study. Factors affecting fuselage design are outlined and trends are discussed. It is concluded that the forthcoming wide, single-deck fuselage, seating up to 10 abreast, will have a potential capacity of about 550 passengers. For larger capacities, the greater efficiency of multi-deck fuselages over that of the single-deck becomes increasingly apparent on a per-passenger basis. The use of multi-deck fuselages, however, will raise new problems-particularly those of airport terminal design and passenger evacuation-but these should not prove insurmountable.