Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Method to Evaluate the Acoustic Performance of the Pillar Filler Foam in a Truck Cab

2020-04-14
2020-01-0505
The truck cab is made of many structural members like hinge, A/B/C - pillar, rocker, roof rails, headliner, quarter panels, cross-members at the floor and other body panels. For an acoustic example, the source energy travels easily from one end to another end through pillars. To reduce these acoustic effects, the filler foams were added inside the pillars. The proper usage of filler design and filler material type produces the optimal sound response at the driver head space location. In this paper, an analytical method is used to evaluate the acoustic performance of the fillers as described above and the method also avoids the expensive full vehicle tests. The statistical energy analysis (SEA) model simulations and post-processing techniques were used to evaluate the results quickly with an acceptable level of accuracy.
Technical Paper

Modeling Airborne Noise Transmission in a Truck using Statistical Energy Analysis

2007-05-15
2007-01-2432
Statistical Energy Analysis (SEA) was used during the design of a new heavy duty truck. This paper provides an overview of the building and validation process of an airborne SEA model of a typical commercial vehicle. Predictions of interior noise levels are compared against tests. A noise path contribution analysis is presented, demonstrating how the impact of potential design changes on the interior sound levels can be evaluated with an SEA model.
Technical Paper

Attenuation of Vehicle Noise using Different Trunk Insulation Systems

2009-05-19
2009-01-2122
Attenuation of noise from the rear of a vehicle was evaluated for different trunk insulation systems using a combination of poro-elastic material modeling and a full vehicle SEA model. The model considered the interaction between the trunk and the passenger cabin. The sound absorption coefficients and acoustic impedance for each of the material systems used in the trunk were measured and the poro-elastic Biot properties were calculated to define the acoustic treatments in the SEA model. Several levels of acoustical treatment for the trunk were studied ranging from a trunk with no decorative liner to a trunk with a liner and maximum acoustical treatment. The results show the contribution of the trunk material in reducing cabin noise for different levels of noise originating at the rear of the vehicle. These results demonstrate the value of combining poro-elastic material modeling and SEA models for selecting efficient material systems early in a vehicle design.
Technical Paper

Prediction of Transient Engine Compartment Temperature During After-Boil

2011-04-12
2011-01-0657
The performance of ground vehicles of all types is influenced by the cooling and ventilation of the engine compartment. An increased heat load into the engine compartment occurs after engine shut down. Heat is transferred from the hot components within the engine compartment by natural convection to the surrounding air and by radiation to the adjacent surfaces. The heat is then dissipated to the ambient mostly by convection from the exterior surfaces. The objective of this study is to develop a Computational Fluid Dynamics (CFD) simulation methodology to predict the airflow velocity and temperature distributions within the engine compartment, as well as the surface temperature of critical engine components during the after-boil condition. This study was conducted using a full-scale, simplified engine compartment of an armored combat vehicle. Steady-state simulation was performed first to predict the condition prior to engine shut down.
Technical Paper

Testing and Simulation of Anti-Flutter Foam and High Damping Foam in a Vehicle Roof Structure

2013-05-13
2013-01-1944
The excitation of structural modes of vehicle roofs due to structure-borne excitations from the road and powertrain can generate boom and noise issues inside the passenger cabin. The use of elastomeric foams between the roof bows and roof panel can provide significant damping to the roof and reduce the vibration. If computer-aided engineering (CAE) can be used to predict the effect of elastomeric foams accurately on vibration and noise, then it would be possible to optimize the properties and placement of foam materials on the roof to attenuate vibration. The properties of the different foam materials were characterized in laboratory tests and then applied to a flat test panel and a vehicle body-in-white. This paper presents the results of an investigation into the testing and CAE analysis of the vibration and radiated sound power of flat steel panels and the roof from the BIW of an SUV with anti-flutter foam and Terophon® high damping foam (HDF) materials.
Technical Paper

Acoustic Simulation of Multilayered Noise Control Treatment with Porous Material

2018-04-03
2018-01-0144
Porous materials have been applied increasingly for absorbing noise energy and improving the acoustic performance. Different models have been proposed to predict the performance of these materials, and much progress has been achieved. However, most of the foregoing researches have been conducted on a single layer of porous material. In real application, porous materials are usually combined with other kinds of materials to compose a multilayered noise control treatment. This paper investigates the acoustic performance of such treatments with a combination of porous and non-porous media. Results from numerical simulation are compared to experimental measurements. Transfer matrix method is adopted to simulate the insertion loss and absorption associated with three samples of a noise control treatment product, which has two porous layers bonded by an impervious screen.
Technical Paper

Virtual Temperature Controlled Seat Performance Test

2018-04-03
2018-01-1317
The demand for seating comfort is growing - in cars as well as trucks and other commercial vehicles. This is expected as the seat is the largest surface area of the vehicle that is in contact with the occupant. While it is predominantly luxury cars that have been equipped with climate controlled seats, there is now a clear trend toward this feature becoming available in mid-range and compact cars. The main purpose of climate controlled seats is to create an agreeable microclimate that keeps the driver comfortable. It also reduces the “stickiness” feeling which is reported by perspiring occupants on leather-covered seats. As part of the seat design process, a physical test is performed to record and evaluate the life cycle and the performance at ambient and extreme temperatures for the climate controlled seats as well as their components. The test calls for occupied and unoccupied seats at several ambient temperatures.
X