Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Effective System Development Partitioning

In terms of modern technical systems, the automotive sector is characterized by escalating complexity and functionality requirements. The development of embedded control systems has to meet highest demands regarding process-, time- and cost-optimization. Hence, the efficiency of software development becomes a crucial competitive advantage. Systems design engineers need effective tools and methods to achieve exemplary speed and productivity within the development phase. To obtain such tools and methods, semiconductor manufacturers and tool manufacturers must work closely together. Within the joint efforts of ETAS and Infineon, the software tool suite ASCET-SD was enhanced to generate efficient C code for Infineon's TriCore architecture mapped on ETAS's real-time operating system ERCOSEK. The processor interface to application & calibration tools was realized using the ETK probe based on a JTAG/Nexus link at very high bandwidth.
Technical Paper

Towards Integrating Model-Driven Development of Hard Real-Time Systems with Static Program Analyzers

Software developers in the automotive sector must achieve high quality objectives. Many design and implementation errors are avoided by synthesizing code from model-based software specifications using automatic code generators such as ETAS' ASCET. To verify non-functional properties of the implementation, model-based design processes should be complemented with static program analysis tools like AbsInt's StackAnalyzer and timing analyzer aiT. ASCET, StackAnalyzer and aiT can be integrated in a way that the analysis results for code generated by ASCET are conveniently accessible from within the ASCET development environment. This gives ASCET users a direct feedback on the effects of their design decisions on resource usage, allowing to select more efficient designs and implementation methods. In the paper, we present the tools, the experimental integration, preliminary results and plans for further tool integration.
Technical Paper

Model-Based System Development - Is it the Solution to Control the Expanding System Complexity In The Vehicle?

Already today the car is a complex embedded system with a multitude of linked subsystems and components. In future these distributed systems have to be developed faster and with high quality via integrated, optimized design process. Scalable systems with an increased maintainability can be generated, if an agreement on a standardized technical architecture (hard- and software) is made at the beginning of the development. The challenges in the design of such distributed systems can be met through advanced automotive systems and software engineering in conjunction with suitable processes, methods and tools. Because the designers that must collaborate are distributed in different divisions or companies, it is essential that an overarching model based design methodology is used.
Technical Paper

Next Generation Test Automation

This paper presents ETAS GmbH research and product development activities related to test automation for embedded systems in the automotive industry. We propose a structured approach to flexible, systematic and efficient test automation. This research is based on several years of experience with test automation processes, products and solutions. Current research and development activities are closely linked to a pilot customer, implementing unified and automated test processes across several divisions. Central aspects of our research include a precise definition of various tasks and roles in an overall test process, the flexible connection of test case development tools, and test bench independence. Our research helps create test solutions which offer improved reusability of test cases and better manageability of test processes.