Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Robust Design of an Automotive Polymer Component EGR Valve Position Sensor Rotor

2008-04-14
2008-01-0379
Due to the increasing application of polymer material in structural components within automotive industry, the application of robust structural design becomes increasingly more important. In this paper, a fractured polymer component, a position sensor rotor from a heavy-duty diesel Exhaust Gas Recirculation (EGR) valve, was studied in detail by finite element methods (FEM). This process included three stages. First, a 3D nonlinear FEM (contact element) was constructed and sensor rotor stress and deformation were obtained under assembly and operation environments. The Coulomb-Mohr failure theory was employed to evaluate the existing design margin relative to the load cases understood from the application. In the second stage, a design sensitivity analysis was performed to select the robust design alternatives from among several improved designs.
Technical Paper

Fatigue Life Assessment on an Automotive Engine Exhaust Valve

2006-04-03
2006-01-0977
This paper presents the fatigue life assessment work on an engine exhaust valve subject to specified durability test cycles. Using valve stress (or strain) data from finite element methods, material fatigue data, and fatigue prediction models (i.e. SN approach and εN approach based on multi-axial Brown-Miller critical plane method), the valve life estimates were obtained and compared with the observed test data, which were in reasonable agreement. In addition, crack growth approach was used and valve crack propagation life including early stage growth was computed. Finally, a general discussion on three life estimates (i.e. fatigue total life, strain-life and crack growth life) was provided with their governing equation, supported by three real cases.
X