Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Styrofoam Precursors as Drop-in Diesel Fuel

2013-09-08
2013-24-0108
Styrene, or ethylbenzene, is mainly used as a monomer for the production of polymers, most notably Styrofoam. In the synthetis of styrene, the feedstock of benzene and ethylene is converted into aromatic oxygenates such as benzaldehyde, 2-phenyl ethanol and acetophenone. Benzaldehyde and phenyl ethanol are low value side streams, while acetophenone is a high value intermediate product. The side streams are now principally rejected from the process and burnt for process heat. Previous in-house research has shown that such aromatic oxygenates are suitable as diesel fuel additives and can in some cases improve the soot-NOx trade-off. In this study acetophenone, benzaldehyde and 2-phenyl ethanol are each added to commercial EN590 diesel at a ratio of 1:9, with the goal to ascertain whether or not the lower value benzaldehyde and 2-phenyl ethanol can perform on par with the higher value acetophenone. These compounds are now used in pure form.
Technical Paper

Emission Performance of Lignin-Derived Cyclic Oxygenates in a Heavy-Duty Diesel Engine

2012-04-16
2012-01-1056
In earlier research, a new class of bio-fuels, so-called cyclic oxygenates, was reported to have a favorable impact on the soot-NOx trade-off experience in diesel engines. In this paper, the soot-NOx trade-off is compared for two types of cyclic oxygenates. 2-phenyl ethanol has an aromatic and cyclohexane ethanol a saturated or aliphatic ring structure. Accordingly, the research is focused on the effect of aromaticity on the aforementioned emissions trade-off. This research is relevant because, starting from lignin, a biomass component with a complex poly-aromatic structure, the production of 2-phenyl ethanol requires less hydrogen and can therefore be produced at lower cost than is the case for cyclohexane ethanol.
Technical Paper

Characterization of Low Load PPC Operation using RON70 Fuels

2014-04-01
2014-01-1304
The concept of Partially Premixed Combustion is known for reduced hazardous emissions and improved efficiency. Since a low-reactive fuel is required to extend the ignition delay at elevated loads, controllability and stability issues occur at the low-load end. In this investigation seven fuel blends are used, all having a Research Octane Number of around 70 and a distinct composition or boiling range. Four of them could be regarded as ‘viable refinery fuels’ since they are based on current refinery feedstocks. The latter three are based on primary reference fuels, being PRF70 and blends with ethanol and toluene respectively. Previous experiments revealed significant ignition differences, which asked for further understanding with an extended set of measurements. Experiments are conducted on a heavy duty diesel engine modified for single cylinder operation. In this investigation, emphasis is put on idling (600 rpm) and low load conditions.
Journal Article

Lignin Derivatives as Potential Octane Boosters

2015-04-14
2015-01-0963
Owing to environmental and health concerns, tetraethyl lead was gradually phased out from the early 1970's to mid-1990's in most developed countries. Advances in refining, leading to more aromatics (via reformate) and iso-paraffins such as iso-octane, along with the introduction of (bio) oxygenates such as MTBE, ETBE and ethanol, facilitated the removal of lead without sacrificing RON and MON. In recent years, however, legislation has been moving in the direction of curbing aromatic and olefin content in gasoline, owing to similar concerns as was the case for lead. Meanwhile, concerns over global warming and energy security have motivated research into renewable fuels. Amongst which are those derived from biomass. The feedstock of interest in this study is lignin, which, together with hemicellulose and cellulose, is amongst the most abundant organic compounds on the planet.
Technical Paper

A Study of a Glow Plug Ignition Engine by Chemiluminescence Images

2007-07-23
2007-01-1884
An experimental study of a glow plug engine combustion process has been performed by applying chemiluminescence imaging. The major intent was to understand what kind of combustion is present in a glow plug engine and how the combustion process behaves in a small volume and at high engine speed. To achieve this, images of natural emitted light were taken and filters were applied for isolating the formaldehyde and hydroxyl species. Images were taken in a model airplane engine, 4.11 cm3, modified for optical access. The pictures were acquired using a high speed camera capable of taking one photo every second or fourth crank angle degree, and consequently visualizing the progress of the combustion process. The images were taken with the same operating condition at two different engine speeds: 9600 and 13400 rpm. A mixture of 65% methanol, 20% nitromethane and 15% lubricant was used as fuel.
Technical Paper

Effect of Temperature Stratification on the Auto-ignition of Lean Ethanol/Air Mixture in HCCI engine

2008-06-23
2008-01-1669
It has been known from multi-zone simulations that HCCI combustion can be significantly affected by temperature stratification of the in-cylinder gas. With the same combustion timing (i.e. crank angles at 50% heat release, denoted as CA50), large temperature stratification tends to prolong the combustion duration and lower down the in-cylinder pressure-rise-rate. With low pressure-rise-rate HCCI engines can be operated at high load, therefore it is of practical importance to look into more details about how temperature stratification affects the auto-ignition process. It has been realized that multi-zone simulations can not account for the effects of spatial structures of the stratified temperature field, i.e. how the size of the hot and cold spots in the temperature field could affect the auto-ignition process. This question is investigated in the present work by large eddy simulation (LES) method which is capable of resolving the in-cylinder turbulence field in space and time.
Technical Paper

Comparison of Heat Release and NOx Formation in a DI Diesel Engine Running on DME and Diesel Fuel

2001-03-05
2001-01-0651
Although there seems to be a consensus regarding the low emission potential of DME, there are still different opinions about why the low NOx emissions can be obtained without negative effects on thermal efficiency. Possible explanations are: The physical properties of DME affecting the spray and the mixture formation Different shape and duration of the heat release in combination with reduced heat losses In this paper an attempt is made to increase the knowledge of DME in relation to diesel fuel with respect to heat release and NOx formation. The emphasis has been to create injection conditions as similar as possible for both fuels. For that purpose the same injection system (CR), injection pressure (270 bar), injection timing and duration have been used for the two fuels. The only differences were the diameters of the nozzle holes, which were chosen to give the same fuel energy supply, and the physical properties of the fuels.
Technical Paper

Laser-Rayleigh Imaging of DME Sprays in an Optically Accessible DI Diesel Truck Engine

2001-03-05
2001-01-0915
Laser-Rayleigh imaging has been employed to measure the relative fuel concentration in the gaseous jet region of DME sprays. The measurements were performed in an optically accessible diesel truck engine equipped with a common rail injection system. A one-hole nozzle was used to guarantee that the recorded pressure history was associated with the heat release in the imaged spray. To compensate for the low compression ratio in the modified engine the inlet air was preheated. Spray development was studied for two levels of preheating, from the start of injection to the point where all fuel was consumed. The results indicate that there is a strong correlation between the amount of unburned fuel present in the cylinder and the rate of heat release at a given time. The combustion can not be described as purely premixed or purely mixing-controlled at any time, but always has an element of both. After all fuel appears to have vanished there is still an extended period of heat release.
Technical Paper

Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

2017-03-28
2017-01-0726
Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol.
Technical Paper

Performance and Emission Studies in a Heavy-Duty Diesel Engine Fueled with an N-Butanol and N-Heptane Blend

2019-04-02
2019-01-0575
N-butanol, as a biomass-based renewable fuel, has many superior fuel properties. It has a higher energy content and cetane number than its alcohol competitors, methanol and ethanol. Previous studies have proved that n-butanol has the capability to achieve lower emissions without sacrifice on thermal efficiency when blended with diesel. However, most studies on n-butanol are limited to low blending ratios, which restricts the improvement of emissions. In this paper, 80% by volume of n-butanol was blended with 20% by volume of n-heptane (namely BH80). The influences of various engine parameters (combustion phasing, EGR ratio, injection timing and intake pressure, respectively) on its combustion and emission characteristics are tested at different loads. The results showed that when BH80 uses more than 40% EGR, the emitted soot and nitrogen oxides (NOx) emissions are below the EURO VI legislation.
X