Refine Your Search

Topic

Author

Search Results

Video

Vertical Picture-Frame Wing Jig Structure Design with an Eye to Foundation Loading

2012-03-14
The foundation of many production aircraft assembly facilities is a more dynamic and unpredictable quantity than we would sometimes care to admit. Any tooling structures constructed on these floors, no matter how thoroughly analyzed or well understood, are at the mercy of settling and shifting concrete, which can cause very lengthy and costly periodic re-certification and adjustment procedures. It is with this in mind, then, that we explore the design possibilities for one such structure to be built in Belfast, North Ireland for the assembly of the Shorts C-Series aircraft wings. We evaluate the peak floor pressure, weight, gravity deflection, drilling deflection, and thermal deflection of four promising structures and discover that carefully designed pivot points and tension members can offer significant benefits in some areas.
Video

Automating AFP Tuning Using a Laser Sensor

2012-03-22
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, ?on board? maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Journal Article

Expanding the Use of Robotics in Airframe Assembly Via Accurate Robot Technology

2010-09-28
2010-01-1846
Serial link articulated robots applied in aerospace assembly have largely been limited in scope by deficiencies in positional accuracy. The majority of aerospace applications require tolerances of +/−0.25mm or less which have historically been far beyond reach of the conventional off-the-shelf robot. The recent development of the accurate robot technology represents a paradigm shift for the use of articulated robotics in airframe assembly. With the addition of secondary feedback, high-order kinematic model, and a fully integrated conventional CNC control, robotic technology can now compete on a performance level with customized high precision motion platforms. As a result, the articulated arm can be applied to a much broader range of assembly applications that were once limited to custom machines, including one-up assembly, two-sided drilling and fastening, material removal, and automated fiber placement.
Journal Article

Laser Profilometry For Non-Contact Automated Countersink Diameter Measurement

2014-09-16
2014-01-2255
Automated countersink measurement methods which require contact with the workpiece are susceptible to a loss of accuracy due to cutting debris and lube build-up. This paper demonstrates a non-contact method for countersink diameter measurement on CFRP which eliminates the need for periodic cleaning. Holes are scanned in process using a laser profilometer. Coordinates for points along the countersink edge are processed with a unique filtering algorithm providing a highly repeatable estimate for major and minor diameter.
Journal Article

Utilization of a Vision System to Automate Mobile Machine Tools

2014-09-16
2014-01-2271
In an attempt to be more flexible and cost effective, Aerospace Manufacturers have increasingly chosen to adapt a manufacturing style which borrows heavily from the Automotive industry. To facilitate this change in methodologies a system for locating robots has been developed which utilizes cameras for both locating and guidance of a mobile platform for a robot with drilling and fastening end effector.
Journal Article

E7000 High-Speed CNC Fuselage Riveting Cell

2013-09-17
2013-01-2150
Electroimpact has recently produced a high-speed fuselage panel fastening machine which utilizes an all-electric, CNC-controlled squeeze process for rivet upset and bolt insertion. The machine is designed to fasten skin panels to stringers, shear ties, and other internal fuselage components. A high riveting rate of 15 rivets per minute was achieved on the first-generation E7000 machine. This rate includes drilling, insertion, and upset of headed fuselage rivets. The rivets are inserted by a roller screw-driven upper actuator, with rivet upset performed by a lower actuator driven by a high-load-capacity ball screw. The rivet upset process can be controlled using either position- or load-based feedback. The E7000 machine incorporates a number of systems to increase panel processing speed, improve final product quality, and minimize operator intervention.
Journal Article

Rivet and Bolt Injector with Bomb Bay Ejection Doors

2013-09-17
2013-01-2151
Electroimpact's newest riveting machine features a track-style injector with Bomb Bay Ejection Doors. The Bomb Bay Ejection Doors are a robust way to eject fasteners from track style injector. Track style injectors are commonly used by Electroimpact and others in the industry. Using the Bomb Bay Doors for fastener ejection consists of opening the tracks allowing very solid clearing of an injector when ejecting a fastener translating to a more reliable fastener delivery system. Examples of when fastener ejection is needed are when a fastener is sent backwards, when there are two in the tube, or when a machine operator stops or resets the machine during a fastening cycle. This method allows fasteners to be cleared in nearly every situation when ejecting a fastener is required. Additional feature of Electroimpact's new injection system is integrated anvil tool change.
Journal Article

Implementation of Non-Contact Drives into a High-Rail, 7-Axis, AFP Motion Platform

2013-09-17
2013-01-2288
Traditionally, automated fiber placement (AFP) motion platforms use rack and pinion drive trains coupled through a gearbox to a rotary motor. Extensive use of non-contact linear motors on a new AFP motion platform produces a quiet, low-maintenance system without sacrificing precision. A high-rail gantry arrangement allows dynamic performance improvements to machine acceleration and speed, while lowering power consumption costs and capital expenses. The seventh axis incorporated into the machine arrangement effectively produces an effective “five sides of a cube” work envelope, permitting complex spar and panel fabrication.
Journal Article

Panel Assembly Line (PAL) for High Production Rates

2015-09-15
2015-01-2492
Developing the most advanced wing panel assembly line for very high production rates required an innovative and integrated solution, relying on the latest technologies in the industry. Looking back at over five decades of commercial aircraft assembly, a clear and singular vision of a fully integrated solution was defined for the new panel production line. The execution was to be focused on co-developing the automation, tooling, material handling and facilities while limiting the number of parties involved. Using the latest technologies in all these areas also required a development plan, which included pre-qualification at all stages of the system development. Planning this large scale project included goals not only for the final solution but for the development and implementation stages as well. The results: Design/build philosophy reduced project time and the number of teams involved. This allowed for easier communication and extended development time well into the project.
Journal Article

Body Join Drilling for One-Up-Assembly

2013-09-17
2013-01-2296
Over 1,200 large diameter holes must be drilled into the side-of-body join on a Boeing commercial aircraft's fuselage. The material stack-ups are multiple layers of primarily titanium and CFRP. Due to assembly constraints, the holes must be drilled for one-up-assembly (no disassembly for deburr). In order to improve productivity, reduce manual drilling processes and improve first-time hole quality, Boeing set out to automate the drilling process in their Side-of-Body join cell. Implementing an automated solution into existing assembly lines was complicated by the location of the target area, which is over 15 feet (4 meters) above the factory floor. The Side-of-Body Drilling machines (Figure 1) are capable of locating, drilling, measuring and fastening holes with less than 14 seconds devoted to non-drilling operations. Drilling capabilities provided for holes up to ¾″ in diameter through stacks over 4.5″ thick in a titanium/CFRP environment.
Journal Article

Plate Cartridge Compact Flexible Automatic Feed System

2016-09-27
2016-01-2080
The newest generation of automated fastening machines require a feed system that is smaller, more flexible, and faster than any currently available. The feed system must be compact enough to fit on a robot base, yet have a capacity large enough to support unmanned production for hours. A large variety of fasteners must be supported and the entire system must be reloaded or reconfigured in minutes to match the next work piece being assembled by the machine. When requested by the part program, the correct fastener must be released directly and immediately into the feed tube to minimize cycle time. This paper describes a new “plate cartridge” feed system developed to meet these needs.
Journal Article

Automated Coaxial Squeeze Riveter

2011-10-18
2011-01-2774
Electroimpact has developed a new automated squeeze riveting process. This process utilizes an innovative coaxial riveting head design in which the drill spindle and rivet driver share a common servo axis, with a simple toggle mechanism to switch which tool is active. This system has been optimized for the installation of headed solid rivets which can be automatically installed without the need for additional process tools beyond the drill and driver. By optimizing for the requirements of these rivets, Electroimpact has been able to eliminate much of the complexity typically seen on automated fastening equipment, resulting in an unprecedentedly simple and cost-effective design.
Journal Article

Automatic Bolt Feeding on a Multifunction Flextrack

2011-10-18
2011-01-2773
One of the largest advancements in the use of the Flextrack technology is the addition of automated fastener installation on the Multifunction Flextrack made by Electroimpact. The new Flextrack installs SSTF (Single Sided Temporary Fasteners) into the holes it drills without removing clamp-up force from the workpiece. This is the first Flextrack to drill and install fasteners and its functionality goes beyond even these functions. The fasteners, SSTF bolts, are increasingly replacing more cumbersome and manual tools for temporary fastening of aerospace components during assembly. They provide doweling, clamp-up, and feature a compact head to facilitate machine installation. The new Multifunction Flextrack carries the bolts on the machine head as opposed to being fed through a feed tube. A Bolt Cartridge System carries up to 80 bolts onboard the Flextrack and the Cartridges can be quick changed for use with several different diameters.
Journal Article

Automated Metrology Solution to Reduce Downtime and De-Skill Tooling Recertification

2012-09-10
2012-01-1869
Wing and fuselage aircraft structures require large precise tools for assembly. These large jigs require periodic re-certification to validate jig accuracy, yet metrology tasks involved may take the tool out of service for a week or more and typically require highly specialized personnel. Increasing the time between re-certifications adds the risk of making out-of-tolerance assemblies. How can we reduce jig re-certification down time without increasing the risk of using out-of-tolerance tooling? An alternative, successfully tested in a prototype tool, is to bring automated metrology tools to bear. Specifically, laser tracker measurements can be automated through a combination of off-the-shelf & custom software, careful line-of-sight planning, and permanent embedded targets. Retro-reflectors are placed at critical points throughout the jig. Inaccessible (out of reach) tool areas are addressed through the use of low cost, permanent, shielded repeatability targets.
Technical Paper

Case Study on the Challenges and Responses of a Large Turnkey Assembly Line for the C919 Wing

2020-03-10
2020-01-0010
Design and production of an assembly system for a major aircraft component is a complex undertaking, which demands a large-scale system view. Electroimpact has completed a turnkey assembly line for producing the wing, flap, and aileron structures for the COMAC C919 aircraft in Xi’an, China. The project scope includes assembly process design, material handling design, equipment design, manufacture, installation, and first article production support. Inputs to the assembly line are individual component parts and small subassemblies. The assembly line output is a structurally completed set of wing box, flaps, and ailerons, for delivery to the Final Assembly Line in Shanghai. There is a trend toward defining an assembly line procurement contract by production capacity, versus a list of components, which implies that an equipment supplier must become an owner of production processes.
Technical Paper

Automatic Feeding of Temporary Fasteners in Confined Spaces

2010-09-28
2010-01-1879
Single Sided Slave Fasteners (SSSF) or Single Sided Temporary Fasteners (SSTF) are increasingly replacing more cumbersome and manual tools for temporary doweling and clamping of aerospace components during assembly. Their ability to clamp provide doweling and clamping reduce the amount of tooling required. Due to their low profile and blind (one-sided) capability, the key benefit of this new technology is the ability to install these fasteners with automated machines. Electroimpact has developed machines to feed primarily SSTF bolts made application-specific by Centrix LLC [ 1 ]. The application discussed in this paper presented problems of confined spaces where a variety of fasteners were required to be fed automatically. To address this, Electroimpact developed new Bolt Injector and Bolt Inserter technology to feed multiple diameters of SSTF bolts in a very small package. Application-specific SSTF were designed such that multiple diameters could be fed through one feed tube.
Technical Paper

Vision System Non Contact Measurement of Pintail Type Fasteners

2010-09-28
2010-01-1870
Accurately measuring the length of a pintail type fastener is limited by the process of forming the fastener. When the pintail is formed its overall length is not dimensionally controlled. To accurately measure the grip of the bolt a vision system is utilized that finds the notch between the tail and bolt shank. The grip, diameter, and angle of the bolt prior to insertion are then measured. This method proves to be more accurate than measuring the bolt mechanically and provides a number of other advantages including; decreased measurement time, improved accuracy, FOD detection, and angle of the bolt in the fingers prior to insertion.
Technical Paper

Refurbishment of 767 ASAT Drill-Rivet-Lockbolt Machines

2010-09-28
2010-01-1844
Boeing has relied upon the 767 ASAT (ASAT1) since 1983 to fasten the chords, stiffeners and rib posts to the web of the four 767 wing spars. The machine was originally commissioned with a Terra five axis CNC control. The Terra company went out of business and the controls were replaced with a custom DOS application in 1990. These are now hard to support so Boeing solicited proposals. Electroimpact proposed to retrofit with a Fanuc 31I CNC, and in addition, to replace all associated sensors, cables and feedback systems. This work is now complete on two of the four machines. Both left front and right front are in production with the new CNC control.
Technical Paper

Slug Rivet Machine Installs 16 Rivets Per Minute Drill-Rivet-Shave

2009-11-10
2009-01-3155
Electroimpact has designed the E6000, the next generation riveting machine, with a focus on reduced weight and speed. It will initially be used on ARJ21 wing panels in Xi'an, China, but it is able to fasten a variety of panels including A320 and 737. The E6000's fastening cycle is capable of forming and shaving 16 rivets per minute. Head alignment is maintained by two independent four axis heads using a combination of controls and kinematics. Process tool speed has been improved via high lead screws, high speed Fanuc motors, and a shorter head stone drop. An innovative EI operator interface enhances end user experience.
Technical Paper

New Jig Mounted Wing Panel Riveters, AERAC 2

2009-11-10
2009-01-3089
Electroimpact revisited a piece of automation history this year. In 1989, Electroimpact delivered its first ever Automated Electromagnetic Riveting and Assembly Cell or A.E.R.A.C. to Textron Aero Structures, now Vought Aircraft Industries. These machines produce upper wing panels for Airbus A330/340 aircraft. They were the precursor to the Low Voltage Electromagnetic Riveters or LVER's producing wing panels for Airbus single isle, A340 and A380 programs in Broughton, Wales, UK. In 2009, Electroimpact delivered two next generation AERAC machines to Vought Aircraft Industries. A significant design challenge was to hold the moving mass for the entire machine under 5220 kg without sacrificing performance of the LVER. These machines employ several new technologies to achieve this including Electroimpact's latest generation rivet injector, an integrated headstone load cell, and GE Fanuc's customer board.
X