Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Impact of Ambient Temperature on Gaseous and Particle Emissions from a Direct Injection Gasoline Vehicle and its Implications on Particle Filtration

2013-04-08
2013-01-0527
Gaseous and particle emissions from a gasoline direct injection (GDI) and a port fuel injection (PFI) vehicle were measured at various ambient temperatures (22°C, -7°C, -18°C). These vehicles were driven over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) on Tier 2 certification gasoline (E0) and 10% by volume ethanol (E10). Emissions were analyzed to determine the impact of ambient temperature on exhaust emissions over different driving conditions. Measurements on the GDI vehicle with a gasoline particulate filter (GPF) installed were also made to evaluate the GPF particle filtration efficiency at cold ambient temperatures. The GDI vehicle was found to have better fuel economy than the PFI vehicle at all test conditions. Reduction in ambient temperature increased the fuel consumption for both vehicles, with a much larger impact on the cold-start FTP-75 drive cycle observed than for the hot-start US06 drive cycle.
Technical Paper

Impact of Ethanol and Isobutanol Gasoline Blends on Emissions from a Closed-Loop Small Spark-Ignited Engine

2015-04-14
2015-01-1732
The focus of this study was the characterization and comparison of power-specific exhaust emission rates from a closed-loop small spark-ignited engine fuelled with ethanol and isobutanol gasoline blends. A 4-cycle Kohler ECH-630 engine certified to the Phase 3 emissions standards was operated over the G2 test cycle, a six-mode steady-state test cycle, in its original configuration. This engine was equipped with electronic ignition, electronic fuel injection and an oxygen sensor. Certification gasoline fuel was splash-blended by percent volume with ethanol and isobutanol to result in the test blend levels of E10, E15, iB16 and iB8-E10. Reductions in emission rates of carbon monoxide (up to 12.0% with the ethanol blends and up to 11.4% with the isobutanol blends) were achieved along with a reduction in total hydrocarbons (up to 10.9% with the ethanol blends and up to 8.2% with the isobutanol blends). Nitrogen oxide emissions were decreased by up to 9.8% with the ethanol blends.
X