Refine Your Search

Topic

Search Results

Journal Article

A Computational Approach to Evaluate the Automotive Windscreen Wiper Placement Options Early in the Design Process

2013-05-13
2013-01-1933
For most car manufacturers, wind noise from the greenhouse region has become the dominant high frequency noise contributor at highway speeds. Addressing this wind noise issue using experimental procedures involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process. Previously, a computational approach that couples an unsteady computational fluid dynamics solver (based on a Lattice Boltzmann method) to a Statistical Energy Analysis (SEA) solver had been validated for predicting the noise contribution from the side mirrors. This paper presents the use of this computational approach to predict the vehicle interior noise from the windshield wipers, so that different wiper placement options can be evaluated early in the design process before the surface is frozen.
Journal Article

Assessment of Broadband Noise Generated by a Vehicle Sunroof at Different Flow Conditions using a Digital Wind Tunnel

2015-06-15
2015-01-2321
For the automotive industry, the quality and level of the wind noise contribution has a growing importance and therefore should be addressed as early as possible in the development process. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof broadband noise is generated by the turbulent flow developed over the roof opening. A strong shear layer and vortices impacting on the trailing edge of the sunroof are typical mechanisms related to the noise production. Sunroof designs are tested to meet broadband noise targets. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions and potentially late design changes.
Journal Article

A Computational Approach to Assess Buffeting and Broadband Noise Generated by a Vehicle Sunroof

2015-04-14
2015-01-1532
Car manufacturers put large efforts into reducing wind noise to improve the comfort level of their cars. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof designs are tested to meet low-frequency buffeting (also known as boom) targets and broadband noise targets for the fully open sunroof with deflector and for the sunroof in vent position. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process.
Journal Article

Comparison of Computational Simulation of Automotive Spinning Wheel Flow Field with Full Width Moving Belt Wind Tunnel Results

2015-04-14
2015-01-1556
One of the remaining challenges in the simulation of the aerodynamics of ground vehicles is the modeling of the airflows around the spinning tires and wheels of the vehicle. As in most advances in the development of simulation capabilities, it is the lack of appropriately detailed and accurate experimental data with which to correlate that holds back the advance of the technology. The flow around the wheels and tires and their interfaces with the vehicle body and the ground is a critical area for the development of automobiles and trucks, not just for aerodynamic forces and moments, and their result on fuel economy and vehicle handling and performance, but also for the airflows and pressures that affect brake cooling, engine cooling airflows, water spray management etc.
Journal Article

Response of a Prototype Truck Hood to Transient Aerodynamic Loading

2009-04-20
2009-01-1156
A study was performed to determine the fluid structure interaction (FSI) for a prototype truck hood for transient aerodynamic loads. The growing need to make vehicle panels lighter to enhance the fuel economy of vehicles has made hood panels more prone to deformation and vibration from aerodynamic loads. Moreover, as global pedestrian crash standards become more stringent to provide safer front end designs to minimize injuries to head and leg, automotive manufacturers are being required to design flexible hoods that crush significantly more than the present designs to absorb the crash energy better. These flexible designs lead to potentially undesirable deformations and/or vibration behavior of the hood at typical highway speeds.
Journal Article

Evaluation and Optimization of Aerodynamic and Aero-Acoustic Performance of a Heavy Truck using Digital Simulation

2011-04-12
2011-01-0162
The engineering process in the development of commercial vehicles is facing more and more stringent emission regulations while at the same time the market demands for better performance but with lower fuel consumption. The optimization of aerodynamic performance for reduced drag is a key element for achieving related performance targets. Closely related to aerodynamics are wind noise and cabin soiling and both of them are becoming more and more important as a quality criterion in many markets. This paper describes the aerodynamic and aero-acoustic performance evaluation of a Dongfeng heavy truck using digital simulation based on a LBM approach. It includes a study for improving drag within the design of a facelift of the truck. A soiling analysis is performed for each aerodynamic result by calculating the accumulation of particles emitted form the wheels on the cabin. One of the challenges in the development process of trucks is that different cabin types have to be designed.
Journal Article

Modelling A-Pillar Water Overflow: Developing CFD and Experimental Methods

2012-04-16
2012-01-0588
Water accumulating on a vehicle's wind screen, driven over the A-pillar by a combination of aerodynamic forces and the action of the windscreen wipers, can be a significant impediment to driver vision. Surface water film, or streams, persisting in key vision areas of the side glass can impair the drivers' ability to see clearly through to the door mirror, and laterally onto junctions. Common countermeasures include: water management channels and hydrophobic glass coatings. Water management channels have both design and wind noise implications. Hydrophobic coatings entail significant cost. In order to manage this design optimisation issue a water film and wiper effect model has been developed in collaboration with Jaguar Land Rover, extending the capabilities of the PowerFLOW CFD software. This is complimented by a wind-tunnel based test method for development and validation. The paper presents the progress made to date.
Journal Article

Role of Accurate Numerical Simulation of Brake Cooldown in Brake Design Process

2012-09-17
2012-01-1811
An important metric in the vehicle brake design process, the cool-down time for a brake disk, strongly influences the durability and reliability of brakes. However, the brake cool-down time is a function of many vehicle and chassis factors, making it time consuming and expensive to evaluate and optimize in hardware testing. In this study, we investigate an alternative approach to hardware testing for evaluating brake design cool-down time by implementing a CFD (Computational Fluid Dynamics) simulation based methodology. The simulation cases were all compared with test data and good agreement was observed between test data and simulation over a wide range of design parameters. It is therefore demonstrated that accurate simulation is a promising new approach to the brake design process.
Journal Article

Application of CFD to Predict Brake Disc Contamination in Wet Conditions

2016-04-05
2016-01-1619
Brake disc materials are being utilised that have low noise/dust properties, but are sensitive to contamination by surface water. This drives large dust shields, making brake cooling increasingly difficult. However, brake cooling must be delivered without compromising aerodynamic drag and hence CO2 emissions targets. Given that front brake discs sit in a region of geometric, packaging and flow complexity optimization of their performance requires the analysis of thermal, aerodynamic and multi-phase flows. Some of the difficulties inherent in this task would be alleviated if the complete analysis could be performed in the same CAE environment: utilizing common models and the same solver technology. Hence the project described in this paper has sought to develop a CFD method that predicts the amount of contamination (water) that reaches the front brake discs, using a standard commercial code already exploited for both brake disc thermal and aerodynamics analysis.
Journal Article

A Computational Process for Early Stage Assessment of Automotive Buffeting and Wind Noise

2013-05-13
2013-01-1929
A computational process for early stage vehicle shape assessment for automotive front window buffeting and greenhouse wind noise is presented. It is a challenging problem in an experimental process as the vehicle geometry is not always finalized. For example, the buffeting behavior typically worsens during the vehicle development process as the vehicle gets tighter, leading to expensive late counter measures. We present a solution using previously validated CFD/CAA software based on the Lattice Boltzmann Method (LBM). A CAD model with realistic automotive geometry was chosen to simultaneously study the potential of different side mirror geometries to influence the front window buffeting and greenhouse wind noise phenomena. A glass mounted mirror and a door mounted mirror were used for this comparative study. Interior noise is investigated for the two phenomena studied. The unsteady flow is visualized and changes in the buffeting and wind noise behavior are explored.
Technical Paper

Computational Aeroacoustics Investigation of Automobile Sunroof Buffeting

2007-05-15
2007-01-2403
A numerical investigation of automobile sunroof buffeting on a prototype sport utility vehicle (SUV) is presented, including experimental validation. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using the PowerFLOW code, a CFD/CAA software package from Exa Corporation based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution.
Technical Paper

Investigation of Gap Deflector Efficiency for Reduction of Sunroof Buffeting

2009-05-19
2009-01-2233
The efficiency of a gap-type of deflector for suppressing vehicle sunroof buffeting is studied in this work. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using a CFD/CAA numerical method based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution. In this study the same gap-type deflector configuration is installed on two different types of vehicles, a SUV and a sedan.
Technical Paper

CFD Water Management Design for a Passenger Coach with Correlation

2016-09-27
2016-01-8155
Side window clarity and its effect on side mirror visibility plays a major role in driver comfort. Driving in inclement weather conditions such as rain can be stressful, and having optimal visibility under these conditions is ideal. However, extreme conditions can overwhelm exterior water management devices, resulting in rivulets of water flowing over the a-pillar and onto the vehicle’s side glass. Once on the side glass, these rivulets and the pooling of water they feed, can significantly impair the driver’s ability to see the side mirror and to see outwardly when in situations such as changing lanes. Designing exterior water management features of a vehicle is a challenging exercise, as traditionally, physical testing methods first require a full-scale vehicle for evaluations to be possible. Additionally, common water management devices such as grooves and channels often have undesirable aesthetic, drag, and wind noise implications.
Technical Paper

Simulation-Driven Process to Evaluate Vehicle Integration Aspects in Brake Thermal Design

2017-05-24
2017-36-0011
Thermal performance of a brake system is one of the key attributes in a new vehicle development process. Adequate brake cooling characteristics are part of the vehicle performance and safety requirements. The design of a new brake system, however, can be a complex task from a thermal engineering perspective, particularly because of complex interactions between the brake component and the rest of the vehicle. Frequently, the vehicle integration issues are the most serious challenges for brake engineers. There are considerations on how much heat should be dissipated from a single and/or consecutive braking events vs. how much cooling can be provided to the brake corner. Design issues such as where to direct the cooling air to how much flexibility is allowed while complying with other requirements from the studio and aero teams. For a brake engineer, the priority is to maximize cooling to the brake corner and prevent system failure.
Technical Paper

Update on A-Pillar Overflow Simulation

2018-04-03
2018-01-0717
The management of surface water flows driven from the wind screen by the action of wipers and aerodynamic shear is a growing challenge for automotive manufacturers. Pressure to remove traditional vehicle features, such as A-Pillar steps for aesthetic, aeroacoustic and aerodynamic reasons increases the likelihood that surface water may be convected over the A-Pillar and onto the front side glass where it can compromise drivers’ vision. The ability to predict where and under which conditions the A-Pillar will be breached is important for making correct design decisions. The use of numerical simulation in this context is desirable, as experimental testing relies on the use of aerodynamics test properties which will not be fully representative, or late-stage prototypes, making it difficult and costly to correct issues. This paper provides an update on the ability of simulation to predict A-Pillar overflow, comparing physical and numerical results for a test vehicle.
Technical Paper

Numerical Investigation of Wiper Drawback

2019-04-02
2019-01-0640
Windscreen wipers are an integral component of the windscreen cleaning systems of most vehicles, trains, cars, trucks, boats and some planes. Wipers are used to clear rain, snow, and dirt from the windscreen pushing the water from the wiped surface. Under certain conditions however, water which has been driven to the edge of the windscreen by the wiper can be drawn back into the driver’s field of view by aerodynamic forces introduced by the wiper motion. This is wiper drawback, an undesirable phenomenon as the water which is drawn back on to the windscreen can reduce driver’s vision and makes the wiper less effective. The phenomena of wiper drawback can be tested for in climatic tunnels using sprayer systems to wet the windscreen. However, these tests require a bespoke test property or prototype vehicle, which means that the tests are done fairly late in the development of the vehicle.
Technical Paper

The Aerodynamic Development of a New Dongfeng Heavy Truck

2015-09-29
2015-01-2886
The development of a new Dongfeng Heavy truck had very strict targets for fuel consumption. As the aerodynamic drag plays a crucial role for the fuel consumption, a low drag value had to be achieved. It was therefore essential to include evaluation and optimization of the aerodynamics in the development process. Because wind tunnel facilities were not available, the complete aerodynamics development was based on digital simulation. The major portion of the aerodynamic optimization was carried out during the styling phase where mirrors, sun visor, front bumper and aero devices were optimized for drag reduction. For optimizing corner vanes and mud guards, self-soiling from the wheel spray was included in the analysis. The aero results did also show that cooling air flow rates are sufficiently high to ensure proper cooling. During the detailed engineering phase an increase of the drag above the target required further optimization work to finally reach the target.
Technical Paper

A Computational Aeroacoustic Study of Windshield Wiper Influence on Passenger Vehicle Greenhouse Windnoise

2014-06-30
2014-01-2051
This paper presents an approach to numerically simulate greenhouse windnoise. The term “greenhouse windnoise” here describes the sound transferred to the interior through the glass panels of a series vehicle. Different panels, e.g. the windshield or sideglass, are contributing to the overall noise level. Attached parts as mirrors or wipers are affecting the flow around the vehicle and thus the pressure fluctuations which are acting as loads onto the panels. Especially the wiper influence and the effect of different wiper positions onto the windshield contribution is examined and set in context with the overall noise levels and other contributors. In addition, the effect of different flow yaw angles on the windnoise level in general and the wiper contributions in particular are demonstrated. As computational aeroacoustics requires accurate, highly resolved simulation of transient and compressible flow, a Lattice-Boltzmann approach is used.
Technical Paper

A Coupled Approach to Truck Drum Brake Cooling

2015-09-29
2015-01-2901
Trucks can carry heavy load and when applying the brakes during for example a mountain downhill or for an abrupt stop, the brake temperatures can rise significantly. Elevated temperatures in the drum brake region can reduce the braking efficiency or can even cause the brake system to fail, catch fire or even break. It therefore needs to be designed such to be able to transfer the heat out of its system by convection, conduction and/or radiation. All three heat transfer modes play an important role since the drum brakes of trucks are not much exposed to external airflow, a significant difference from disk brakes of passenger cars analyzed in previous studies. This makes it a complex heat transfer problem which is not easy to understand. Numerical methods provide insight by visualization of the different heat transfer modes. Presented is a numerical method that simulates the transient heat transfer of a truck drum brake system cooldown at constant driving speed.
Journal Article

Further Analyses on Prediction of Automotive Spinning Wheel Flowfield with Full Width Moving Belt Wind Tunnel Results

2017-03-28
2017-01-1519
Pickup trucks are designed with a taller ride height and a larger tire envelope compared to other vehicle types given the duty cycle and environment they operate in. These differences play an important role in the flow field around spinning wheels and tires and their interactions with the vehicle body. From an aerodynamics perspective, understanding and managing this flow field are critical for drag reduction, wheel design, and brake cooling. Furthermore, the validation of numerical simulation methodology is essential for a systematic approach to aerodynamically efficient wheel design as a standard practice of vehicle design. This paper presents a correlation the near-wheel flow field for both front and rear spinning wheels with two different wheel designs for a Ram Quad Cab pick-up truck with moving ground. Twelve-hole probe experimental data obtained in a wind tunnel with a full width belt system are compared to the predictions of numerical simulations.
X