Refine Your Search

Topic

Author

Search Results

Journal Article

Aerodynamic Shape Optimization of an SUV in early Development Stage using a Response Surface Method

2014-09-30
2014-01-2445
In the development of an FAW SUV, one of the goals is to achieve a state of the art drag level. In order to achieve such an aggressive target, feedback from aerodynamics has to be included in the early stage of the design decision process. The aerodynamic performance evaluation and improvement is mostly based on CFD simulation in combination with some wind tunnel testing for verification of the simulation results. As a first step in this process, a fully detailed simulation model is built. The styling surface is combined with engine room and underbody detailed geometry from a similar size existing vehicle. From a detailed analysis of the flow field potential areas for improvement are identified and five design parameters for modifying overall shape features of the upper body are derived. In a second step, a response surface method involving design of experiments and adaptive sampling techniques are applied for characterizing the effects of the design changes.
Journal Article

Aerodynamic Impact of Tractor-Trailer in Drafting Configuration

2014-09-30
2014-01-2436
On-highway tractor-trailer vehicles operate in a complex aerodynamic environment that includes influences of surrounding vehicles. Typical aerodynamic analyses and testing of single vehicles on test track, in wind tunnel or in computational fluid dynamics (CFD) do not account for these real world effects. However, it is possible with simulation and on-road testing to evaluate these aerodynamic interactions. CFD and physical testing of multiple vehicle interactions show that traffic interactions can impact the overall drag of leading and trailing vehicles. This paper will discuss results found in evaluating the effects of separation distances on tractor-trailer aerodynamics in on-road and CFD evaluations using a time-accurate Lattice Boltzmann Method based approach and the ramifications for improving real world prediction versus controlled single vehicle testing.
Journal Article

Validation and Design of Heavy Vehicle Cooling System with Waste Heat Recovery Condenser

2014-09-30
2014-01-2339
Fuel efficiency for tractor/trailer combinations continues to be a key area of focus for manufacturers and suppliers in the commercial vehicle industry. Improved fuel economy of vehicles in transit can be achieved through reductions in aerodynamic drag, tire rolling resistance, and driveline losses. Fuel economy can also be increased by improving the efficiency of the thermal to mechanical energy conversion of the engine. One specific approach to improving the thermal efficiency of the engine is to implement a waste heat recovery (WHR) system that captures engine exhaust heat and converts this heat into useful mechanical power through use of a power fluid turbine expander. Several heat exchangers are required for this Rankine-based WHR system to collect and reject the waste heat before and after the turbine expander. The WHR condenser, which is the heat rejection component of this system, can be an additional part of the front-end cooling module.
Journal Article

CFD Correlation with Wind-Tunnel for Dry Van Trailer Aerodynamic Devices

2016-09-27
2016-01-8016
The primary purpose of this paper is to correlate the CFD simulations performed using PowerFLOW, a Lattice Boltzmann based method, and wind tunnel tests performed at a wind tunnel facility on 1/8th scaled tractor-trailer models. The correlations include results using an aerodynamic-type tractor paired with several trailer configurations, including a baseline trailer without any aerodynamic devices as well as combinations of trailer side skirts and a tractor-trailer gap flow management device. CFD simulations were performed in a low blockage open road environment at full scale Reynolds number to understand how the different test environments impact total aerodynamic drag values and performance deltas between trailer aerodynamic devices. There are very limited studies with the Class-8 sleeper tractor and 53ft long trailer comparing wind tunnel test and CFD simulation with and without trailer aerodynamic device. This paper is to fill this gap.
Journal Article

Characterization of Aerodynamic Design Spaces for Adjustable Tractor Surfaces

2016-09-27
2016-01-8147
Trailer positioning plays a significant role in the overall aerodynamics of a tractor-trailer combination and varies widely depending on configuration and intended use. In order to minimize aerodynamic drag over a range of trailer positions, adjustable aerodynamic devices may be utilized. For maximum benefit, it is necessary to determine the optimal position of the aerodynamic device for each trailer position. This may be achieved by characterizing a two-dimensional design space consisting of trailer height and tractor-trailer gap length, with aerodynamic drag as the response. CFD simulations carried out using a Lattice-Boltzmann based method were coupled with modeFRONTIER for the creation of multiple Kriging Response Surfaces. Simulations were carried out in multiple phases, allowing for the generation of intermediate response surfaces to estimate predictive error and track response surface convergence.
Journal Article

Accurate Fuel Economy Prediction via a Realistic Wind Averaged Drag Coefficient

2017-03-28
2017-01-1535
The ultimate goal for vehicle aerodynamicists is to develop vehicles that perform well on the road under real-world conditions. One of the most important metrics to evaluate vehicle performance is the drag coefficient. However, vehicle development today is performed mostly under controlled settings using wind tunnels and computational fluid dynamics (CFD) with artificially uniform upstream conditions, neglecting real-world effects due to road turbulence from wind and other vehicles. Thus, the drag coefficients computed with these methods might not be representative of the real performance of the car on the road. This might ultimately lead engineers to develop design solutions and aerodynamic devices which, while performing well in idealized conditions, do not perform well on the road. For this reason, it is important to assess the vehicle’s drag as seen in real-world environments. An effort in this direction is represented by using the wind-averaged drag.
Journal Article

Evaluation and Optimization of Aerodynamic and Aero-Acoustic Performance of a Heavy Truck using Digital Simulation

2011-04-12
2011-01-0162
The engineering process in the development of commercial vehicles is facing more and more stringent emission regulations while at the same time the market demands for better performance but with lower fuel consumption. The optimization of aerodynamic performance for reduced drag is a key element for achieving related performance targets. Closely related to aerodynamics are wind noise and cabin soiling and both of them are becoming more and more important as a quality criterion in many markets. This paper describes the aerodynamic and aero-acoustic performance evaluation of a Dongfeng heavy truck using digital simulation based on a LBM approach. It includes a study for improving drag within the design of a facelift of the truck. A soiling analysis is performed for each aerodynamic result by calculating the accumulation of particles emitted form the wheels on the cabin. One of the challenges in the development process of trucks is that different cabin types have to be designed.
Journal Article

Simulation of Rear Glass and Body Side Vehicle Soiling by Road Sprays

2011-04-12
2011-01-0173
Numerical simulation of aerodynamics for vehicle development is used to meet a wide range of performance targets, including aerodynamic drag for fuel efficiency, cooling flow rates, and aerodynamic lift for vehicle handling. The aerodynamic flow field can also be used to compute the advection of small particles such as water droplets, dust, dirt, sand, etc., released into the flow domain, including the effects of mass, gravity, and the forces acting on the particles by the airflow. Previous efforts in this topic have considered the water sprays ejected by rotating wheels when driving on a wet road. The road spray carries dirt particles and can obscure the side and rear glazing. In this study, road sprays are considered in which the effects of additional water droplets resulting from splashing and dripping of particles from the wheel house and rear under body are added to help understand the patterns of dirt film accumulation on the side glass and rear glass.
Journal Article

Combined Analysis of Cooling Airflow and Aerodynamic Drag for a Class 8 Tractor Trailer Combination

2011-09-13
2011-01-2288
Long haul tractor design in the future will be challenged by freight efficiency standards and emission legislations. Along with any improvements in aerodynamics, this will also require additional cooling capacity to handle the increased heat rejection from next generation engines, waste heat recovery and exhaust gas recirculation systems. Fan engagement will also have to be minimized under highway conditions to maximize fuel economy. These seemingly contradictory requirements will require design optimization via analysis techniques capable of predicting both the aerodynamic drag and engine cooling airflow accurately. This study builds on previous work [1] using a Lattice Boltzmann based computational method on a Volvo VNL tractor trailer combination. Simulation results are compared to tests conducted at National Research Council (NRC) Canada's wind tunnel.
Journal Article

Application of CFD to Predict Brake Disc Contamination in Wet Conditions

2016-04-05
2016-01-1619
Brake disc materials are being utilised that have low noise/dust properties, but are sensitive to contamination by surface water. This drives large dust shields, making brake cooling increasingly difficult. However, brake cooling must be delivered without compromising aerodynamic drag and hence CO2 emissions targets. Given that front brake discs sit in a region of geometric, packaging and flow complexity optimization of their performance requires the analysis of thermal, aerodynamic and multi-phase flows. Some of the difficulties inherent in this task would be alleviated if the complete analysis could be performed in the same CAE environment: utilizing common models and the same solver technology. Hence the project described in this paper has sought to develop a CFD method that predicts the amount of contamination (water) that reaches the front brake discs, using a standard commercial code already exploited for both brake disc thermal and aerodynamics analysis.
Technical Paper

Under-hood Thermal Simulation of a Class 8 Truck

2007-10-30
2007-01-4280
A validation study was performed comparing the simulation results of the Lattice-Boltzmann Equation (LBE) based flow solver, PowerFLOW®, to cooling cell measurements conducted at Volvo Trucks North America (VTNA). The experimental conditions were reproduced in the simulations including dynamometer cell geometry, fully detailed under-hood, and external tractor geometry. Interactions between the air flow and heat exchangers were modeled through a coupled simulation with the 1D-tool, PowerCOOL™, to solve for engine coolant and charge air temperatures. Predicted temperatures at the entry and exit plane of the radiator and charge-air-cooler were compared to thermocouple measurements. In addition, a detailed flow analysis was performed to highlight regions of fan shroud loss and cooling airflow recirculation. This information was then used to improve cooling performance in a knowledge-based incremental design process.
Technical Paper

Aerodynamic Simulations of a Class 8 Heavy Truck: Comparison to Wind Tunnel Results and Investigation of Blockage Influences

2007-10-30
2007-01-4295
The accuracy of the Lattice-Boltzmann based simulation method for prediction of aerodynamic drag on a heavy truck was evaluated by comparing results to twenty percent scale model wind tunnel measurements from the University of Washington Aeronautical Laboratory (UWAL). A detailed preproduction Kenworth T2000 tractor trailer was used as the scale model. The results include a comparison of normalized drag between simulation and wind tunnel as well as percentage drag change with the addition of a radius to the rear edge of the trailer. Significant effort was involved to model all of the wind tunnel details affecting the tractor-trailer drag. These are discussed along with the results of additional simulations which were performed to study the impact of the UWAL tunnel geometry relative to a tunnel with the same blockage and constant cross-sectional area, and a case with negligible blockage.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

Simulation of Cooling Airflow under Different Driving Conditions

2007-04-16
2007-01-0766
Presented are simulations of cooling airflow and external aerodynamics over Land Rover LR3 and Ford Mondeo cars under several driving conditions. The simulations include details of the external flow field together with the flow in the under-hood and underbody areas. Shown is the comparison between the predicted and measured coolant inlet temperature in the radiator, drag and lift coefficients, temperature distribution on the radiator front face, and wake total pressure distribution. Very good agreement is observed. In addition, shown is the complex evolution of the temperature field in the idle case with strong under-hood recirculation. It is shown that the presented Lattice-Boltzmann Method based approach can provide accurate predictions of both cooling airflow and external aerodynamics.
Technical Paper

Lattice Boltzmann Simulations of the Unsteady Flow Behind the Ahmed Body

2008-04-14
2008-01-0740
The Ahmed body is a simplified vehicle geometry that results in flow features representative of those found at the rear of most passenger vehicles. By adjusting the rear slant angle, separation can take place at the sharp corner, on the rear slant panel, or not at all. Accurate prediction of the separation and reattachment of the flow is essential in predicting the correct drag trends. This separation and reattachment is known to be a highly unsteady phenomenon. The objective of this study is to evaluate the ability of a lattice Boltzmann based CFD code to predict the correct drag trends and flow structures for the Ahmed body at varying rear slant angles. Component and total drag values show excellent agreement with the original experiments of Ahmed over a wide range of rear slant angles (5 to 35 degrees).
Technical Paper

Aerodynamic Simulations of a Generic Tractor-Trailer: Validation and Analysis of Unsteady Aerodynamics

2008-10-07
2008-01-2612
Aerodynamic simulations of a 1:8-scale simplified tractor-trailer, designated as the Generic Conventional Model (GCM), were conducted using a Lattice-Boltzmann based solver. Comparisons were made to experimental measurements from the NASA Ames 12-Foot Pressure Wind Tunnel, including drag coefficients as a function of yaw, static and transient surface pressures, and three-component particle image velocimetry. The baseline model configuration was tested at yaw angles from 0 to 12 degrees, allowing the calculation of the wind-averaged drag coefficient. Results demonstrated that the simulation predicted body-axis drag within experimental uncertainty and also resolved the correct pressure distribution and flow structure in the separated flow regions including the tractor-trailer gap and trailer wake regions. The comparison of the experimental transient pressure spectra showed good agreement with the simulation results, both in magnitude and identification of dominant spectral peaks.
Technical Paper

Design and CFD Analysis of an NHRA Funny Car Body

2008-12-02
2008-01-3003
This paper describes the methodology used to design and perform a CFD analysis of a Chevrolet Impala SS Funny Car body. This body was designed for the purpose of making it available for teams to race it in the National Hot Rod Association (NHRA) drag racing series beginning with the 2007 race season. Several challenges were presented in this project: (1) This was the first time a General Motors drag racing body for use in professional classes (Funny Car or otherwise) was ever designed in CAD. (2) The body was originally designed as a 2007 Chevrolet Monte Carlo. After the tooling was completed, changes in Chevrolet’s product lineup required that the body be changed to a 2007 Impala SS. (3) Budget constraints precluded CFD analysis until after the bodies were already being manufactured. There were several teams that raced the new body during the 2007 race season. One of these teams won the Funny Car Driver’s Championship.
Technical Paper

Optimization of Aerodynamics and Engine Cooling Performance of a JMC Mid-Size Truck using Simulation

2010-10-05
2010-01-2032
The engineering process in the development of commercial vehicles is facing more and more stringent emission regulations while at the same time the market demands for better performance but with lower fuel consumption and higher reliability. Respective targets require better utilization of existing or even higher engine cooling capacity and optimization of aerodynamic performance for reduced drag. In order to aid on achieving both goals, special attention should be paid on understanding both external and under hood flow structures. This paper describes an optimization study for reducing aerodynamic drag and increasing engine cooling performance conducted on a Light Truck at Jiangling Motors Corporation (JMC). The approach is using simulation based on a LBM solver coupled with a heat exchanger model. Such methodology was used to predict both aerodynamic and cooling characteristics and help highlighting potential areas for improvement.
Technical Paper

Aerodynamic Study of a Production Tractor Trailer Combination using Simulation and Wind Tunnel Methods

2010-10-05
2010-01-2040
The importance of fuel economy and emission standards has increased rapidly with high fuel costs and new environmental regulations. This requires analysis techniques capable of designing the next generation long-haul truck to improve both fuel efficiency and cooling. In particular, it is important to have a predictive design tool to assess how exterior design changes impact aerodynamic performance. This study evaluates the use of a Lattice Boltzmann based numerical simulation and the National Research Council (NRC) Canada's wind tunnel to assess aerodynamic drag on a production Volvo VNL tractor-trailer combination. Comparisons are made between the wind tunnel and simulation to understand the influence of wind tunnel conditions on truck aerodynamic performance. The production VNL testing includes a full range of yaw angles to demonstrate the influence of cross wind on aerodynamic drag.
Technical Paper

Simulation-Driven Process to Evaluate Vehicle Integration Aspects in Brake Thermal Design

2017-05-24
2017-36-0011
Thermal performance of a brake system is one of the key attributes in a new vehicle development process. Adequate brake cooling characteristics are part of the vehicle performance and safety requirements. The design of a new brake system, however, can be a complex task from a thermal engineering perspective, particularly because of complex interactions between the brake component and the rest of the vehicle. Frequently, the vehicle integration issues are the most serious challenges for brake engineers. There are considerations on how much heat should be dissipated from a single and/or consecutive braking events vs. how much cooling can be provided to the brake corner. Design issues such as where to direct the cooling air to how much flexibility is allowed while complying with other requirements from the studio and aero teams. For a brake engineer, the priority is to maximize cooling to the brake corner and prevent system failure.
X