Refine Your Search

Topic

Author

Search Results

Technical Paper

Micro-Mobility Vehicle Dynamics and Rider Kinematics during Electric Scooter Riding

2020-04-14
2020-01-0935
Micro-mobility is a fast-growing trend in the transportation industry with stand-up electric scooters (e-scooters) becoming increasingly popular in the United States. To date, there are over 350 ride-share e-scooter programs in the United States. As this popularity increases, so does the need to understand the performance capabilities of these vehicles and the associated operator kinematics. Scooter tip-over stability is characterized by the scooter geometry and controls and is maintained through operator inputs such as body position, interaction with the handlebars, and foot placement. In this study, testing was conducted using operators of varying sizes to document the capabilities and limitations of these e-scooters being introduced into the traffic ecosystem. A test course was designed to simulate an urban environment including sidewalk and on-road sections requiring common maneuvers (e.g., turning, stopping points, etc.) for repeatable, controlled data collection.
Journal Article

Timber Utility Pole Fracture Mechanics Due to Non-Deformable and Deformable Moving Barrier Impacts

2011-04-12
2011-01-0288
The energy dissipated by the fracture of wooden utility poles during vehicle impacts is not currently well documented, is dependent upon non-homogenous timber characteristics, and can therefore be difficult to quantify. While there is significant literature regarding the static and quasi-static properties of wood as a building material, there is a narrow body of literature regarding the viscoelastic properties of timber used for utility poles. Although some theoretical and small-scale testing research has been published, full-scale testing has not been conducted for the purpose of studying the vehicle-pole interaction during impacts. The parameters that define the severity of the impact include the acceleration profile, vehicle velocity change, and energy dissipation. Seven full-scale crash tests were conducted at Exponent's Arizona test facility utilizing both moving deformable and non-deformable barriers into new wooden utility poles.
Technical Paper

Six-Degree-of-Freedom Accelerations: Linear Arrays Compared with Angular Rate Sensors

2010-04-12
2010-01-1017
A 3-2-2-2 array of linear accelerometers and a combination of a triaxial linear accelerometer and a triaxial angular rate sensor were mounted into a Hybrid III 50th percentile male ATD head-form and compared in a variety of short- and long-duration events. An appropriate low-pass filter cutoff frequency for differentiating the angular rate sensor data into angular accelerations was found by using a residual analysis to find individual cutoff frequencies for the three center of mass (COM) linear accelerometer channels and the three angular rate sensor channels and taking the arithmetic mean of the six cutoffs. The angular rate sensors provide more accurate rotational rates than integrated angular accelerations calculated from arrays of linear accelerometers and are less cumbersome, especially for events lasting longer than 200 ms.
Technical Paper

Lane-Keeping Behavior and Cognitive Load with Use of Lane Departure Warning

2017-03-28
2017-01-1407
Lane Departure Warning (LDW) systems, along with other types of Advanced Driver Assistance Systems (ADAS), are becoming more common in passenger vehicles, with the general aim of improving driver safety through automation of various aspects of the driving task. Drivers have generally reported satisfaction with ADAS with the exception of LDW systems, which are often rated poorly or even deactivated by drivers. One potential contributor to this negative response may be an increase in the cognitive load associated with lane-keeping when LDW is in use. The present study sought to examine the relationship between LDW, lane-keeping behavior, and concurrent cognitive load, as measured by performance on a secondary task. Participants drove a vehicle equipped with LDW in a demarcated lane on a closed-course test track with and without the LDW system in use over multiple sessions.
Technical Paper

Steering Shaft Separation with a Collision Involved Heavy Duty Steering Gear

2018-04-03
2018-01-0524
A crash of a medium duty truck led to a study of the failure mechanism of the truck’s steering system. The truck, after being involved in a multi-vehicle vehicle collision, was found with its steering input shaft disconnected from the steering gear. The question arose whether the steering gear failure was a result of the collision, or causative to the collision. An in-depth investigation was conducted into whether forces on the vehicle due to the collision could cause the steering shaft to separate from the steering gear. Additionally, the performance of the steering gear with the adjuster nut progressively backed off was studied to determine the feedback a driver would receive if the steering gear came progressively apart. From the results of these studies, conclusions with regard to the crash causation were reached.
Technical Paper

Evaluation of Operational Safety Assessment (OSA) Metrics for Automated Vehicles in Simulation

2021-04-06
2021-01-0868
The operational safety of automated driving system (ADS)-equipped vehicles (AVs) must be quantified using well-defined metrics in order to gain an unambiguous understanding of the level of risk associated with AV deployment on public roads. In this research, efforts to evaluate the operational safety assessment (OSA) metrics introduced in prior work by the Institute of Automated Mobility (IAM) are described. An initial validation of the proposed set of OSA metrics involved using the open-source simulation software Car Learning to Act (CARLA) and Scenario Runner, which are used to place a subject vehicle in selected scenarios and obtain measurements for the various relevant OSA metrics. Car following scenarios were selected from the list of 37 pre-crash scenarios identified by the National Highway Traffic Safety Administration (NHTSA) as the most common driving situations that lead to crash events involving two light vehicles.
Technical Paper

Evaluating the Severity of Safety Envelope Violations in the Proposed Operational Safety Assessment (OSA) Methodology for Automated Vehicles

2022-03-29
2022-01-0819
As the automated vehicle (AV) industry continues to progress, it is important to establish the level of operational safety of these vehicles prior to and throughout their deployment on public roads. The Institute of Automated Mobility (IAM) has previously proposed a set of operational safety assessment (OSA) metrics which can be used to quantify the operational safety of vehicles. The OSA metrics provide a starting point to consistently quantify performance, but a framework to interpret the metrics measurements is needed to objectively quantify the overall operational safety for a vehicle in a given scenario. This work aims to present an approach to applying a calculation of the safety envelope component of the OSA metrics to rear-world collisions for use in such an assessment. In this paper, the OSA methodology concept is introduced as a means for quantifying the operational safety of a vehicle.
Technical Paper

Sensitivity of Automated Vehicle Operational Safety Assessment (OSA) Metrics to Measurement and Parameter Uncertainty

2022-03-29
2022-01-0815
As the deployment of automated vehicles (AVs) on public roadways expands, there is growing interest in establishing metrics that can be used to evaluate vehicle operational safety. The set of Operational Safety Assessment (OSA) metrics, that include several safety envelope-type metrics, previously proposed by the Institute of Automated Mobility (IAM) are a step towards this goal. The safety envelope OSA metrics can be computed using kinematics derived from video data captured by infrastructure-based cameras and thus do not require on-board sensor data or vehicle-to-infrastructure (V2I) connectivity, though either of the latter data sources could enhance kinematic data accuracy. However, the calculation of some metrics includes certain vehicle-specific parameters that must be assumed or estimated if they are not known a priori or communicated directly by the vehicle.
Technical Paper

Fractional Thermal Runaway Calorimetry: A Novel Tool to Assess Battery Thermal Runaway Energy

2023-04-11
2023-01-0510
The use of Lithium-ion batteries in the transportation sector has its own unique set of requirements such as high-power demands, cooling challenges, and risk of mechanical failure due to crashes. Active and passive components of thermal management systems in battery-powered products are designed to mitigate the effects of thermal runaway events and prevent cell-to-cell propagation. Designing safe battery-powered systems requires an understanding of how the battery pack will behave while undergoing thermal runaway, including critical data such as total energy yielded, rate of energy generation, as well as venting patterns and directions. Details such as thermal runaway energy fractions associated with the cell casing as well as vent gas and ejecta can be used to inform and optimize battery pack designs and the product as a whole. The NASA Fractional Thermal Runaway Calorimeter (FTRC) was created to measure these values.
Technical Paper

Electric Vehicle Battery Safety and Compliance

2023-04-11
2023-01-0597
Electric vehicles (EVs) and the development around them has been rapid in recent years. As the battery is the most essential component of an electric vehicle, a lot of research and analysis has been focused on ensuring safe and reliable performance of batteries. Considering the location, size, and operating conditions for EV batteries, they must be designed with an in-built safety infrastructure keeping in mind certain realistic scenarios such as fire exposure, mechanical vibration, collisions, over-charging, single cell failures, and others. In this paper, we discuss an overview of various EV battery failure mechanisms, present current safety and abuse testing methods and standards associated with such mechanisms and discuss the need for the development and implementation of additional testing standards to better characterize the safety performance of EV battery packs.
Technical Paper

Effects of Innovation in Automated Vehicles on Occupant Compartment Designs, Evaluation, and Safety: A Review of Public Marketing, Literature, and Standards

2019-04-02
2019-01-1223
In recent years, the discussion around the advent of highly automated vehicles has shifted from “if” to “when.” Commercially available vehicles already incorporate automated vehicle (AV) technologies of varying capability, and the eventual transition to fully automated systems, at least within certain predefined Operational Design Domains, is largely considered inevitable. While the full ramifications of this shift and the eventual depreciation of human driver control are still under intense debate, there is broad agreement on one issue -the advent of driverless systems will remove several constraints on the design of vehicle interior spaces, creating the opportunity for innovation. Even at this early stage, ambitious design concepts of purpose specific vehicles - mobile gyms, offices, bedrooms - have been proposed. More grounded designs, such as rotating passenger seats, have also been put forward.
Technical Paper

Evaluation of Ejection Risk and Injury Distribution Using Data from the Large Truck Crash Causation Study (LTCCS)

2014-04-01
2014-01-0491
Three years of data from the Large Truck Crash Causation Study (LTCCS) were analyzed to identify accidents involving heavy trucks (GVWR >10,000 lbs.). Risk of rollover and ejection was determined as well as belt usage rates. Risk of ejection was also analyzed based on rollover status and belt use. The Abbreviated Injury Scale (AIS) was used as an injury rating system for the involved vehicle occupants. These data were further analyzed to determine injury distribution based on factors such as crash type, ejection, and restraint system use. The maximum AIS score (MAIS) was analyzed and each body region (head, face, spine, thorax, abdomen, upper extremity, and lower extremity) was considered for an AIS score of three or greater (AIS 3+). The majority of heavy truck occupants in this study were belted (71%), only 2.5% of occupants were completely or partially ejected, and 28% experienced a rollover event.
Journal Article

Full-Scale Burn Test of a 2001 Full-Size Pickup Truck

2013-04-08
2013-01-0214
Temperature measurements during a full-scale burn test of a 2001 full-size pickup truck showed that the fire progressed in distinct stages in both the engine and passenger compartments. Although the fire started in the engine compartment and had a relatively long growth period, when a localized area reached about 700°C, a distinct transition occurred where the rate of fire spread increased, leading to full involvement of all engine compartment combustibles. As the engine compartment became fully involved, a hot gas layer then accumulated at the ceiling of the passenger compartment, producing a strong vertical temperature gradient. When the temperature at the ceiling reached about 600°C, another distinct transition occurred where the rate of fire spread increased, leading to full involvement of the passenger compartment. The highest temperature during the test occurred within the engine compartment in an area that had the greatest fuel load, and not the area of origin.
Journal Article

Full-scale Fire Tests of Electric Drive Vehicle Batteries

2015-04-14
2015-01-1383
Fires involving cars, trucks, and other highway vehicles are a common concern for emergency responders. In 2013 alone, there were approximately 188,000 highway vehicle fires. Fire Service personnel are accustomed to responding to conventional vehicle (i.e., internal combustion engine [ICE]) fires, and generally receive training on the hazards associated with those vehicles and their subsystems. However, in light of the recent proliferation of electric drive vehicles (EDVs), a key question for emergency responders is, “what is different with EDVs and what tactical adjustments are required when responding to EDV fires?” The overall goal of this research program was to develop the technical basis for best practices for emergency response procedures for EDV battery incidents, with consideration for suppression methods and agents, personal protective equipment (PPE), and clean-up/overhaul operations.
Journal Article

Infrastructure-Based Sensor Data Capture Systems for Measurement of Operational Safety Assessment (OSA) Metrics

2021-04-06
2021-01-0175
The operational safety of automated driving system (ADS)-equipped vehicles (AVs) needs to be quantified for an understanding of risk, requiring the measurement of parameters as they relate to AVs and human driven vehicles alike. In prior work by the Institute of Automated Mobility (IAM), operational safety metrics were introduced as part of an operational safety assessment (OSA) methodology that provide quantification of behavioral safety of AVs and human-driven vehicles as they interact with each other and other road users. To calculate OSA metrics, the data capture system must accurately and precisely determine position, velocity, acceleration, and geometrical relationships between various safety-critical traffic participants. The design of an infrastructure-based system that is intended to capture the data required for calculation of OSA metrics is addressed in this paper.
Technical Paper

Measurements of Non-Injurious Head Accelerations of Young Children

2014-04-01
2014-01-0493
Few studies have investigated pediatric head injury mechanics with subjects below the age of 8 years. This paper presents non-injurious head accelerations during various activities for young children (2 to 7 years old). Eight males and five females aged 2-7 years old were equipped with a head sensor package and head kinematics were measured while performing a series of playground-type activities. The maximum peak resultant accelerations were 29.5 G and 2745 rad/s2. The range of peak accelerations was 2.7 G to 29.5 G. The range of peak angular velocities was 4.2 rad/s to 22.4 rad/s. The range of peak angular accelerations was 174 rad/s2 to 2745 rad/s2. Mean peak resultant values across all participants and activities were 13.8 G (range 2.4 G to 13.8 G), 12.8 rad/s (range 4.0 rad/s to 12.8 rad/s), and 1375 rad/s2 (range 105 rad/s2 to 1375 rad/s2) for linear acceleration, angular velocity, and angular acceleration, respectively.
Technical Paper

The Use of Stationary Object Radar Sensor Data from Advanced Driver Assistance Systems (ADAS) in Accident Reconstruction

2016-04-05
2016-01-1465
As a result of the development of Event Data Recorders (EDR) and the recent FMVSS regulation 49 CFR 563, today’s automobiles provide a limited subset of electronic data measurements of a vehicle’s state before and during a crash. Prior to this data, the only information available about the vehicle movements before or during a collision had come from physical evidence (e.g. tire marks), witnesses, aftermarket camera systems on vehicles, and ground-based cameras that were monitoring vehicle traffic or used for security surveillance. Today’s vehicles equipped with Advanced Driver Assistance Systems (ADAS) have vehicle-based sensors that measure information about the environment around a vehicle including other vehicles, pedestrians, and fixed wayside objects.
Technical Paper

A Study of Vehicle Impacts during Dolly Rollover Tests and Comparison to Frontal and Side Impact Tests

2014-04-01
2014-01-0529
Studies of rollover accidents have reported crash attributes such as the number of rolls, rollout distance, initial over-the-ground speed, average roll rate, average over-the-ground deceleration, magnitude of roof deformation, cumulative damage, time and post-crash headroom. While these more general attributes are related to the repeated vehicle-to-ground impacts during a rollover, it has been previously shown [1] that a specific ground impact during a rollover and its consequences can be studied in more detail by using its acceleration time history (crash pulse or impulse) and energy loss. These two quantities are particularly meaningful to use when studying impact mechanics, however, they are limited to circumstances where the data exists, which means real-world on-road crashes cannot be used directly. Acceleration and energy data have been collected and previously published for three Subaru Forester dolly rollover tests, and have been studied in more detail in this writing.
Technical Paper

Head and Neck Loading Conditions over a Decade of IIHS Rear Impact Seat Testing

2019-04-02
2019-01-1227
Rear-end impacts are the most common crash scenario in the United States. Although automated vehicle (AV) technologies, such as frontal crash warning (FCW) and automatic emergency braking (AEB), are mitigating and preventing rear-end impacts, the technology is only gradually being introduced and currently has only limited effectiveness. Accordingly, there is a need to evaluate the current state of passive safety technologies, including the performance of seatbacks and head restraints. The objective of this study was to examine trends in head and neck loading during rear impact testing in new vehicle models over the prior decade. Data from 601 simulated rear impact sled tests (model years 2004 to 2018) conducted as a part of the Insurance Institute for Highway Safety (IIHS) Vehicle Seat/Head Restraint Evaluation Protocol were obtained.
Journal Article

Heavy Truck Stability with a Trailing Axle Tire Blowout

2012-04-16
2012-01-0238
Trailing axles, otherwise known as tag axles, are utilized in many states to allow heavy duty dump trucks and cement trucks to maximize their capacity. The trailing axle is an additional axle mounted on an arm on the rear of the truck that can be raised and lowered. When lowered, the axle extends the overall wheelbase of the vehicle and increases the total number of axles, thereby allowing for additional load to be carried without exceeding load-restriction regulations. There are multiple manufactures of trailing axles that utilize different suspension designs. One design uses an articulating axle that is mounted to the framework that lowers it. In this study, the sensitivity of this design to tire blowout on one of the trailing axle tires is studied. Testing was conducted that involved initiating a sudden air-loss event by creating a hole in the sidewall of the tire. The handling response of the vehicle was documented with on-board instrumentation and on-board and off-board video.
X