Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Aspects of Powertrain Noise with Special Emphasis on Impulsive Noise

2007-05-15
2007-01-2411
NVH refinement is an important aspect of the powertrain development process. Powertrain NVH refinement is influenced by overall sound levels as well as sound quality. The sound quality and hence the level of powertrain NVH refinement can be negatively affected by the presence of excessive impulsive noise. This paper describes a process used to develop an understanding of impulsive powertrain noise. The paper begins with an introductory discussion of various sources of impulsive noise in an automotive powertrain. Following this, the paper outlines a process for identifying the source of the impulsive powertrain noise using examples from case studies. The remainder of the paper focuses on certain examples of impulsive noise such as Diesel knocking noise, injector ticking, impulsive cranktrain noise, and gear rattle. For these examples, the development of key objective metrics, optimization measures, and improvement potential are examined.
Technical Paper

Weight and Friction Optimized Cranktrain Design Supported by Coupled CAE Tools

2009-04-20
2009-01-1452
Due to the contradiction of the market demands and legal issues OEMs are forced to invest in finding concepts that assure high fuel economy, low exhaust emissions and high specific power at the same time. Since mechanical losses may amount up to 10 % of the fuel energy, a key to realise such customer/government specific demands is the improvement of the mechanical performance of the engines, which comprises mainly friction decrease and lightweight design of the engine parts. In order to achieve the mentioned objectives, it has to be checked carefully for each component whether the design potentials are utilized. Many experimental studies show that there is still room for optimization of the cranktrain parts, especially for the crankshaft. A total exploitation of the crankshaft potentials is only possible with advanced calculation approaches that ensure the component layout within design limits.
Technical Paper

Powertrain-related vehicle sound development

2000-06-12
2000-05-0301
This paper reflects an efficient and comprehensive approach for vehicle sound optimization integrated into the entire development process. It shows the benefits of early consideration of typical vehicle NVH features and of intensive interaction of P/T and vehicle responsibilities. The process presented here considers the typical restriction that acoustically representative prototypes of engines and vehicles are not available simultaneously at the early development phase. For process optimization at this stage, a method for vehicle interior noise estimation is developed, which bases on measurements from the P/T test bench only, while the vehicle transfer behavior for airborne and structure-borne noise is assumed to be similar to a favorable existing vehicle. This method enables to start with the pre- optimization of the pure P/T and its components by focusing on such approaches which are mainly relevant for the vehicle interior noise.
Technical Paper

NVH Optimization of an In-Line 4-Cylinder Powertrain

1995-05-01
951294
The NVH optimization is a key issue for the development of future powertrains. This includes the radiated noise in terms of noise level and sound quality as well as the structure-borne noise excitation via the engine mounts. Experience shows that there are generally no single noise relevant components on modern powertrains which dominate the NVH behaviour. In contrast, a good NVH performance can only be achieved if the optimization process includes every single component and excitation. Only the combination of these optimized designs can lead to a first-class powertrain NVH. Within this paper the NVH optimization process of an existing 4-cylinder in-line spark-ignition powertrain is described. Examples for positive NVH designs are presented and their effect on the NVH behaviour are explained. Combining all positive NVH features into the engine resulted in a noise reduction of 3-5 dBA without any negative effect on fuel economy and performance.
Technical Paper

Development of Modern Engine Lubrication Systems

1997-02-24
970922
Modern passenger car engines are designed to operate at increasingly higher rated engine speeds with more internal parts (multi-valve engines) requiring lubrication. The paper presents results of research and development activities to reduce the actual feed rate of the oil consumers to their real requirements depending on the most significant influence parameters. Based on these results an optimization strategy is presented which combines CAE tools with data from experimental work. In the conclusion of the paper recommendations are summarized to show the optimization potential of actual lubrication and ventilation systems concerning design. power input respectively oil consumption.
Technical Paper

A New 2.3L DOHC Engine with Balance Shaft Housing - Steps of Refinement and Optimization

1997-02-24
970921
Ford introduced a new in-line 4-cylinder 2.3L DOHC 16-valve engine in its European D-class Scorpio vehicle. The engine is based on the proven 2.0L-DOHC engine with 8 or 16 valves. The new engine replaces the 2.0L DOHC 8-valve version. Primary focus of the development of this new 2.3L engine was on the noise and vibration improvement, both for the engine and for the vehicle interior noise. One measure to achieve this target was the application of balance shafts. In this paper, the development of the new engine will be described from the design stage to the production version. It will focus on the design of the balance shaft housing and all relevant engine NVH features. The various stages of the design and detailed optimization are explained. The NVH prediction by CAE methods is verified with experimental results. The influence of optimized components like the oil pan, front cover and the chain tensioner on the noise behavior will be discussed.
Technical Paper

Cooling System Development and Optimization for DI Engines

2000-03-06
2000-01-0283
The reduction of the fuel consumption and the emissions are the two main goals for the development of current and future engines. Both consumption and emissions are highly influenced by the fluid and the material temperatures of the engine. This offers potential especially at low engine speeds and engine loads to reduce the cooling power and increase the material temperatures to a tribologic and thermodynamic optimized level. The cooling system which is able to control the cooling power and the material temperatures, the required control devices and the control strategy are designated as intelligent heat management. The definition of the requirements for the control devices and the definition of the control strategies requires detailed knowledge about the thermal engine behavior.
Technical Paper

Exhaust Emission Reduction of Combustion Engines by Barrier Discharge - A new Reactor/Generator System

1999-10-25
1999-01-3638
An improved plasma reactor has been designed, built and evaluated. It is characterized by a reduced power per area ratio, relative to previous designs, and includes several improvements to run the whole system safely in a car. The new reactor design includes a concentric inner high voltage electrode, a grounded outer electrode, a shielded high-voltage and high temperature resistant electrical connection. A generator controller has been developed for better control of operating conditions as required during the engine cold start phase. The new generator/reactor system was installed in the exhaust pipe of a gasoline direct injection engine. HC emissions could be reduced up to 30 % in the first 40 seconds of a cold start test. In addition to HC treatment the dielectric barrier discharge has also been investigated as a method for regenerating a diesel particulate trap.
Technical Paper

Intelligent Alcohol Fuel Sensor

1990-02-01
900231
For the use in flexible fuel vehicles able to operate with mixtures of alcohol fuels and gasoline, an intelligent alcohol sensor has been developed. Based on the measurement of the dielectric constant, this sensor overcomes the problems with optical measuring principles; these problems are due to sensitivity to different contents of aromatics. To increase the accuracy, a microprocessor evaluates the input signals (dielectric constant and other parameters). Thus, a compensation of misdetection due to impurities can also be achieved. The output characteristic of the sensor can be chosen freely; the output voltage can correspond to the alcohol content as well as to the required correction factor for the injection time.
Technical Paper

Cold Start Emission Reduction by Barrier Discharge

2000-10-16
2000-01-2891
Dielectric barrier discharge (DBD) offers the advantage to excite and dissociate molecules in the exhaust gas stream. Those dissociated and excited species are oxidizing or reducing harmful exhaust gas components. The advantage of a plasma chemical system in comparison to a catalytic measure for exhaust gas treatment is the instantaneous activity at ambient temperature from the starting of the engine. The investigations reviewed in this paper are dealing with the plasma chemical oxidation of hydrocarbons in the exhaust gas stream during cold start conditions. The article concerns the design and development of a plasma-system in order to decrease the hydrocarbon emissions from engine start till catalyst light off. Vehicle results in the New European Driving Cycle show a hydrocarbon conversion of more than 42% in the first 11 seconds from engine start. In this period nearly all types of hydrocarbon were reduced.
X