Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Comprehensive Combustion Noise Optimization

Combustion noise plays a considerable role in the acoustic tuning of gasoline and diesel engines. Even though noise levels of modern diesel engines reach extremely low values, they are still higher than those of conventional gasoline engines. On the other hand, new combustion procedures designed to improve fuel consumption lead to elevated combustion noise excitations as in case of today's direct injecting gasoline engines whose vibration excitation and airborne noise emissions are slightly increased during stratified operation. The partly conflicting development goals resulting from this can only be realized by integrating the NVH specialists' expertise into every development step from concept to SOP.
Technical Paper

PIFFO - Piston Friction Force Measurements During Engine Operation

Fuel consumption of a modern combustion engine is significantly influenced by the mechanical friction losses. Particularly in typical city driving, the reduction of the engine friction losses offers a remarkable potential in emission and fuel consumption reduction. The analysis of the engine friction distribution of modern engines shows that the piston group has a high share at total engine friction. This offers a high potential to optimize piston group friction. The paper presents results of recent research and development work in the field of the tribological system piston/piston ring/cylinder bore.
Technical Paper

A New Technique for Measuring the Deformation of Cylinder Bores During Engine Operation

The distortion of the cylinder liners of internal combustion engines has a significant affect on engine operation. It can affect the lubrication oil consumption, the blow-by, the wear behaviour and due to the friction, the fuel consumption. In order to achieve future requirements regarding exhaust emissions and fuel consumption, the requirements for low cylinder distortion engine blocks will play a significant role. Hence, a new technique to determine liner distortion during fired engine operation was developed.
Technical Paper

Comparison of De-NOx and Adsorber Catalysts to Reduce NOx - Emissions of Lean Burn Gasoline Engines

A comparison of two different types of NOx reducing catalysts will be worked out. The potential of two De-NOx catalysts using engine out hydrocarbon emissions for NOx conversion will be shown by variation of different engine parameters. An analysis of the hydrocarbon species upstream and downstream catalyst will demonstrate, which components are responsible for the NOx reduction in the exhaust gas of a lean burn engine. By variation of different parameters during adsorbtion and regeneration phases of the adsorber catalyst the efficiency in NOx reduction will be optimized. An assessment of the suitability for lean burn engines will consider the emission reduction efficiency as well as the influence on engine fuel consumption.
Technical Paper

Primary Noise Reduction Measures on IDI Diesel Engines

The IDI diesel engine still offers a substantial development potential. One major advantage is its low fuel consumption and, hence, its low CO2 emission compared to gasoline engines. The disadvantage of its higher noise emission, however, requires particular attention in the development stage. By means of modern signal analysing and signal processing methods in combination with computer simulation methods new tools for the development of low noise Diesel engines are available. The noise emission of IDI diesel engines has on average been reduced by about 5 to 8 dBA within the last 15 years. This trend will continue further despite the introduction of more and more light weight design components. Today's IDI diesel engine is mainly dominated by high noise levels in the frequency range about 1600 to 2000 Hz. In-depth measurements show that this is generally caused by a high combustion excitation (Helmholtz-resonance) and, in addition, structure weaknesses of the crankcase.
Technical Paper

Strategies to Improve SI-Engine Performance by Means of Variable Intake Lift, Timing and Duration

This paper reports the results of theoretical and experimental investigations in the field of variable intake - valve control of spark-ignition engines. Different degrees of freedom for a variable intake profile such as variable intake opening and closing events, variable valve lift, as well as the deactivation of one of the intake valves per cylinder of a multi-valve engine are considered and evaluated concerning their potential to reduce pumping losses, to support mixture formation, and to improve combustion. The investigations show that additional efforts are necessary to convert the potential of minimized pumping losses due to unthrottled SI-engine load control into reduced fuel consumption and good driveability. Increased gas velocities during intake for low engine speed and load and adjusted residual-gas fractions according to the different operating conditions prove to be very efficient parameters to improve engine performance under unthrottled conditions.
Technical Paper

Cooling System Development and Optimization for DI Engines

The reduction of the fuel consumption and the emissions are the two main goals for the development of current and future engines. Both consumption and emissions are highly influenced by the fluid and the material temperatures of the engine. This offers potential especially at low engine speeds and engine loads to reduce the cooling power and increase the material temperatures to a tribologic and thermodynamic optimized level. The cooling system which is able to control the cooling power and the material temperatures, the required control devices and the control strategy are designated as intelligent heat management. The definition of the requirements for the control devices and the definition of the control strategies requires detailed knowledge about the thermal engine behavior.
Technical Paper

Prediction of Combustion Process Induced Vehicle Interior Noise

At the present time, combustion process effects on vehicle interior noise can be evaluated only when vehicle and engine are physically available. This Paper deals with a new method for the prediction of combustion process induced vehicle interior noise. The method can be applied already in early combustion system development and allows a time and cost efficient calibration optimization of engine and vehicle. After establishing appropriate transfer weighting functions (engine) and structure transfer functions (vehicle), audible vehicle interior noise is generated based on appropriate cylinder pressure analysis. Combustion process effects on interior noise can be judged subjectively as well as objectively. Thus, combustion process development at the thermodynamic test bench is effectively supported to achieve an optimal compromise with respect to fuel consumption, exhaust emission and interior noise quality.
Technical Paper

Performance, Fuel Economy, and Emissions Optimization for a 2.2L Multipoint Fuel Injection Gasoline Engine

Future boundary conditions for vehicle engine development will be very complex since they are “functions” of parameters that are difficult to predict: increasingly stringent legislation, changing consumer demand, and availability of resources. The main development goals for passenger cars today are the enhancement of performance and reduction of fuel consumption and cost while facing future emission standards. In China for example, drastic changes in emission regulation have forced the automotive industry to speed up the development processes and shorten the product life cycles. In this respect, the Mianyang Xinchen Engine Co. Ltd, part of Brilliance Group, Mianyang China and FEV Motorentechnik, Aachen Germany conducted a joint project to study Mianyang's 2.2L, 2-valve, multipoint fuel injection (MPI) gasoline engine.
Technical Paper

Simulation of the Piston and Piston Ring Dynamic

All reciprocating engines from the first Diesel engine to turbocharged formula 1 engines require a sealing of the combustion chamber. This sealing is realized by the compression rings. Today a set of two compression rings and one oil control ring is standard, the large variety of available solution demonstrate the continuous effort and attention paid to an optimized system performance since the first engine was started. The complexity of the interactions with the mechanical, thermal, thermodynamic, tribologic, dynamic behavior of the piston still requires mechanical testing of the various components before release to series production. This procedure can be shortened by use of simulation models reflecting the real behavior in detail to select the most promising combinations of components and characteristics.