Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Simulation of the Flow-Field Around a Generic Tractor-Trailer Truck

2004-03-08
2004-01-1147
In the present work computational fluid dynamics (CFD) simulations of the flow field around a generic tractor-trailer truck are presented and compared with corresponding experimental measurements. A generic truck model was considered which is a detailed 1/8th scale replica of a Class-8 tractor-trailer truck. It contained a number of details such as bumpers, underbody, tractor chassis, wheels, and axles. CFD simulations were conducted with wind incident on the vehicle at 0 and 6 degree yaw. Two different meshing strategies (tet-dominant and hex-dominant) and three different turbulence models (Realizable k-ε, RNG k-ε, and DES) are considered. In the first meshing strategy an unstructured tetrahedral mesh was created over a large region surrounding the vehicle and in its wake. In the second strategy the mesh was predominantly hexahedral except for a few narrow regions around the front end and the underbody which were meshed with tetrahedral cells owing to complex topology.
Technical Paper

CFD Application in Automotive Front-End Design

2006-04-03
2006-01-0337
The front-end design process in the automotive industry today is time consuming and expensive. Although CFD (Computational Fluid Dynamics) modeling is helpful, many vehicle development tests in different wind tunnels are still required to balance the competing requirements of power train cooling, vehicle aerodynamics, climate control, styling, body structure, and product cost. For example, engine cooling and climate control heat exchangers require adequate airflow to achieve their performance. But, this airflow increases cooling drag and can compromise vehicle handling. Internal air deflectors (ducting) are often used to make the frontal opening more efficient and help prevent heat recirculation from the hot engine compartment to the A/C condenser at idle. But this increases product cost and can compromise underhood temperature. A more efficient and faster process is needed to support these trade-off discussions.
Technical Paper

Evaluation of the Multiple Reference Frame (MRF) Model in a Truck Fan Simulation

2005-05-10
2005-01-2067
A multiple reference frame (MRF) model was developed by Gosman [1] for the prediction of flow fields induced by impellers in mixing vessels. The simulation results using this approach agree with the test data reasonably well if certain conditions exist. Many CFD engineers have adopted this approach to simulate the fan performance for automotive powertrain cooling simulations [4]. This paper describes the authors' experience using the MRF model in truck fan simulations. For the fan performance studies with a plate shroud, CFD simulation results with different sizes of rotating zones were compared with the test data. Very good agreement between the CFD simulation and the test data with plate shroud can be achieved if a properly sized rotating zone is selected. For the fan performance studies with a real shroud, a simple piece of plywood was used to mimic the engine blockage and the MRF model with one fixed-size rotation zone was used for the CFD simulation.
Technical Paper

Aerodynamics of a Generic Ground Transportation System: Detached Eddy Simulation

2005-04-11
2005-01-0548
The present study is aimed at studying the use of Detached Eddy Simulation (DES) in simulating truck aerodynamics. A computational procedure based on DES implemented within the Finite Volume Method (FVM) framework is developed. Detailed descriptions of various aspects of the procedure are provided here including mesh generation, solution procedure and post-processing guidelines. The computational procedure is applied to study aerodynamics of a generic Ground Transportation System (GTS) at 0° yaw. This is a largely simplified ⅛th scale model of a tractor-trailer truck. Time-average and transient surface pressures, skin friction coefficients, and wake velocity structures are reported. To assess the accuracy of the present procedure, these are compared with corresponding experimental data reported in literature. Such comparison shows that the present procedure predicts drag coefficient accurately well within the bounds of experimental uncertainty.
X