Refine Your Search

Topic

Author

Search Results

Journal Article

The Impact of Spark Discharge Pattern on Flame Initiation in a Turbulent Lean and Dilute Mixture in a Pressurized Combustion Vessel

2013-04-08
2013-01-1627
An operational scheme with fuel-lean and exhaust gas dilution in spark-ignited engines increases thermal efficiency and decreases NOx emission, while these operations inherently induce combustion instability and thus large cycle-to-cycle variation in engine. In order to stabilize combustion variations, the development of an advanced ignition system is becoming critical. To quantify the impact of spark-ignition discharge, ignitability tests were conducted in an optically accessible combustion vessel to characterize the flame kernel development of lean methane-air mixture with CO₂ simulating exhaust diluent. A shrouded fan was used to generate turbulence in the vicinity of J-gap spark plug and a Variable Output Ignition System (VOIS) capable of producing a varied set of spark discharge patterns was developed and used as an ignition source. The main feature of the VOIS is to vary the secondary current during glow discharge including naturally decaying and truncated with multiple strikes.
Journal Article

Validation Metric for Dynamic System Responses under Uncertainty

2015-04-14
2015-01-0453
To date, model validation metric is prominently designed for non-dynamic model responses. Though metrics for dynamic responses are also available, they are specifically designed for the vehicle impact application and uncertainties are not considered in the metric. This paper proposes the validation metric for general dynamic system responses under uncertainty. The metric makes use of the popular U-pooling approach and extends it for dynamic responses. Furthermore, shape deviation metric was proposed to be included in the validation metric with the capability of considering multiple dynamic test data. One vehicle impact model is presented to demonstrate the proposed validation metric.
Journal Article

A New Variable Screening Method for Design Optimization of Large-Scale Problems

2015-04-14
2015-01-0478
Design optimization methods are commonly used for weight reduction subjecting to multiple constraints in automotive industry. One of the major challenges remained is to deal with a large number of design variables for large-scale design optimization problems effectively. In this paper, a new approach based on fuzzy rough set is proposed to address this issue. The concept of rough set theory is to deal with redundant information and seek for a reduced design variable set. The proposed method first exploits fuzzy rough set to screen out the insignificant or redundant design variables with regard to the output functions, then uses the reduced design variable set for design optimization. A vehicle body structure is used to demonstrate the effectiveness of the proposed method and compare with a traditional weighted sensitivity based main effect approach.
Journal Article

A Data Mining-Based Strategy for Direct Multidisciplinary Optimization

2015-04-14
2015-01-0479
One of the major challenges in multiobjective, multidisciplinary design optimization (MDO) is the long computational time required in evaluating the new designs' performances. To shorten the cycle time of product design, a data mining-based strategy is developed to improve the efficiency of heuristic optimization algorithms. Based on the historical information of the optimization process, clustering and classification techniques are employed to identify and eliminate the low quality and repetitive designs before operating the time-consuming design evaluations. The proposed method improves design performances within the same computation budget. Two case studies, one mathematical benchmark problem and one vehicle side impact design problem, are conducted as demonstration.
Journal Article

An Assessment of the Rare Earth Element Content of Conventional and Electric Vehicles

2012-04-16
2012-01-1061
Rare earths are a group of elements whose availability has been of concern due to monopolistic supply conditions and environmentally unsustainable mining practices. To evaluate the risks of rare earths availability to automakers, a first step is to determine raw material content and value in vehicles. This task is challenging because rare earth elements are used in small quantities, in a large number of components, and by suppliers far upstream in the supply chain. For this work, data on rare earth content reported by vehicle parts suppliers was assessed to estimate the rare earth usage of a typical conventional gasoline engine midsize sedan and a full hybrid sedan. Parts were selected from a large set of reported parts to build a hypothetical typical mid-size sedan. Estimates of rare earth content for vehicles with alternative powertrain and battery technologies were made based on the available parts' data.
Journal Article

On Stochastic Model Interpolation and Extrapolation Methods for Vehicle Design

2013-04-08
2013-01-1386
Finite Element (FE) models are widely used in automotive for vehicle design. Even with increasing speed of computers, the simulation of high fidelity FE models is still too time-consuming to perform direct design optimization. As a result, response surface models (RSMs) are commonly used as surrogates of the FE models to reduce the turn-around time. However, RSM may introduce additional sources of uncertainty, such as model bias, and so on. The uncertainty and model bias will affect the trustworthiness of design decisions in design processes. This calls for the development of stochastic model interpolation and extrapolation methods that can address the discrepancy between the RSM and the FE results, and provide prediction intervals of model responses under uncertainty.
Journal Article

Regenerative Braking Control Enhancement for the Power Split Hybrid Architecture with the Utilization of Hardware-in-the-loop Simulations

2013-04-08
2013-01-1466
This study presents the utilization of the hardware-in-the-loop (HIL) approach for regenerative braking (regen) control enhancement efforts for the power split hybrid vehicle architecture. The HIL stand used in this study includes a production brake control module along with the hydraulic brake system, constituted of an accelerator/brake pedal assembly, electric vacuum booster and pump, brake hydraulic circuit and four brake calipers. This work presents the validation of this HIL simulator with real vehicle data, during mild and heavy braking. Then by using the HIL approach, regen control is enhanced, specifically for two cases. The first case is the jerk in deceleration caused by the brake booster delay, during transitions from regen to friction braking. As an example, the case where the regen is ramped out at a low speed threshold, and the hydraulic braking ramped in, can be considered.
Technical Paper

Some Factors in the Subjective Evaluation of Laboratory Simulated Ride

2001-04-30
2001-01-1569
Effects of DOF and subjective method on evaluations of ride quality on the Ford Vehicle Vibration Simulator were studied. Seat track vibrations from 6 vehicles were reproduced on the 6 DOF seat shaker in a DOE with pitch and roll as factors. These appeared in two evaluations of ride/shake; semantic scaling by 30 subjects of 6 vehicles, and paired comparisons by 16 of the subjects on 3 of the vehicles. Both methods found significant vehicle, pitch and roll effects. Order dependence was shown for semantic scaling. The less susceptible paired comparison method gave a different ordering, and is thus preferred.
Technical Paper

Establishing Localized Fire Test Methods and Progressing Safety Standards for FCVs and Hydrogen Vehicles

2011-04-12
2011-01-0251
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 11 years. In the past couple of years, significant attention has been directed toward a revision to the standard for vehicular hydrogen systems, SAE J2579(1). In addition to streamlining test methodologies for verification of Compressed Hydrogen Storage Systems (CHSSs) as discussed last year,(2) the working group has been considering the effect of vehicle fires, with the major focus on a small or localized fire that could damage the container in the CHSS and allow a burst before the Pressure Relief Device (PRD) can activate and safely vent the compressed hydrogen stored from the container.
Technical Paper

Benchmarking of an Open Source CFD Process for Aerodynamics Prediction of Multiple Vehicle Types

2011-04-12
2011-01-0163
A benchmark study was conducted to assess the capability of an open source CFD based process to accurately simulate the physics of the flow field around various vehicle types. The ICON FOAMpro process was used to simulate the flow field of four baseline geometries of a Truck, CD-Car, B-Car and an SUV. Further studies were carried out to assess the effects of geometry variations on the predicted aerodynamic lift and drag. A Detached-Eddy Simulation (DES) approach was chosen for the benchmarks. In addition to aerodynamic lift and drag values, the results for surface pressure data, surface and wake flow fields were calculated. These results were compared with values obtained using Ford's existing CFD processes.
Technical Paper

EGR and Swirl Distribution Analysis Using Coupled 1D-3D CFD Simulation for a Turbocharged Heavy Duty Diesel Engine

2011-09-13
2011-01-2222
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbo Diesel and code named "Scorpion" was designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. A high pressure Exhaust Gas Recirculation (EGR) layout in combination with a Variable Geometry Turbine (VGT) is used to deliver cooled EGR for in-cylinder NOx reduction. The cylinder-to-cylinder variation of EGR and swirl ratio is tightly controlled by the careful design of the EGR mixer and intake system flow path to reduce variability of cylinder-out PM and NOx emissions. 3D-CFD studies were used to quickly screen several EGR mixer designs based on mixing efficiency and pressure drop considerations. To optimize the intake system, 1D-3D co-simulation methodology with AVL-FIRE and AVL-BOOST has been used to assess the cylinder-to-cylinder EGR distribution and dynamic swirl.
Technical Paper

ACOUSTOMIZE™ A Method to Evaluate Cavity Fillers NVH & Sealing Performance

2011-05-17
2011-01-1672
ACOUSTOMIZE™ is a new method of acoustic evaluation used for the purpose of understanding and optimizing NVH performance of vehicles. The following paper documents a case study of the ACOUSTOMIZE™ test methodology on a passenger car BIW. This study includes an analysis of noise flow through BIW locations, a comparison of noise sound levels through BIW cavities with and without a sound treatment package and a comparison of the original cavity sealing design package consisting of baffles, tapes and baggies to low density polyurethane NVH Foam. The results of the study show detection of complex BIW pass throughs that the body leakage test (BLT) was not able to find. In addition, the data shows improved noise reduction with the low density polyurethane foam versus the original cavity sealing design package.
Technical Paper

Communication for Plug-in Electric Vehicles

2012-04-16
2012-01-1036
This paper is the third in the series of documents designed to record the progress on the SAE Plug-in Electric Vehicle (PEV) communication task force. The initial paper (2010-01-0837) introduced utility communications (J2836/1™ & J2847/1) and how the SAE task force interfaced with other organizations. The second paper (2011-01-0866) focused on the next steps of the utility requirements and added DC charging (J2836/2™ & J2847/2) along with initial effort for Reverse Power Flow (J2836/3™ & J2847/3). This paper continues with the following: 1. Completion of DC charging's 1st step publication of J2836/2™ & J2847/2. 2. Completion of 1st step of communication requirements as it relates to PowerLine Carrier (PLC) captured in J2931/1. This leads to testing of PLC products for Utility and DC charging messages using EPRI's test plan and schedule. 3. Progress for PEV communications interoperability in J2953/1.
Technical Paper

Li-Ion Battery SoC Estimation Using a Bayesian Tracker

2013-04-08
2013-01-1530
Hybrid, plug-in hybrid, and electric vehicles have enthusiastically embraced rechargeable Li-ion batteries as their primary/supplemental power source of choice. Because the state of charge (SoC) of a battery indicates available remaining energy, the battery management system of these vehicles must estimate the SoC accurately. To estimate the SoC of Li-ion batteries, we derive a normalized state-space model based on Li-ion electrochemistry and apply a Bayesian algorithm. The Bayesian algorithm is obtained by modifying Potter's squareroot filter and named the Potter SoC tracker (PST) in this paper. We test the PST in challenging test cases including high-rate charge/discharge cycles with outlier cell voltage measurements. The simulation results reveal that the PST can estimate the SoC with accuracy above 95% without experiencing divergence.
Technical Paper

Computer-Aided Engineering Modeling and Automation on High-Performance Computing

2022-06-27
2022-01-5051
The computer-aided engineering (CAE) automation study requires a large disk space and a premium processor. If all finite element (FE) models run locally, it may crash the local machine, and if the FE model runs on high-performance computing (HPC), transferring data from the server to the local machine to do the optimization may cause latency issues. This automation study provides a unique road map to optimize the design by working efficiently using the initial setup on the local machine, running an analysis of a large number of FE models on HPC, and performing optimization on the server. CAE Automation process has been demonstrated using a case study on a driveline component, crush spacer. Crush spacer is a very critical engineering design because, first, it provides the minimum required preload to the bearing inner races to keep them in position and, second, it endures a number of duty cycles.
Technical Paper

Modeling the Effects of Intake Flow Structures on Fuel/Air Mixing in a Direct-injected Spark-Ignition Engine

1996-05-01
961192
Multidimensional computations were carried out to simulate the in-cylinder fuel/air mixing process of a direct-injection spark-ignition engine using a modified version of the KIVA-3 code. A hollow cone spray was modeled using a Lagrangian stochastic approach with an empirical initial atomization treatment which is based on experimental data. Improved Spalding-type evaporation and drag models were used to calculate drop vaporization and drop dynamic drag. Spray/wall impingement hydrodynamics was accounted for by using a phenomenological model. Intake flows were computed using a simple approach in which a prescribed velocity profile is specified at the two intake valve openings. This allowed three intake flow patterns, namely, swirl, tumble and non-tumble, to be considered. It was shown that fuel vaporization was completed at the end of compression stroke with early injection timing under the chosen engine operating conditions.
Technical Paper

The Integrated Electric Lifestyle: The Economic and Environmental Benefits of an Efficient Home-Vehicle System

2013-04-08
2013-01-0495
In recent years, the residential and transportation sectors have made significant strides in reducing energy consumption, mainly by focusing efforts on low-hanging fruit in each sector independently. This independent viewpoint has been successful in the past because the user needs met and resources consumed in each sector have been clearly distinct. However, the trend towards vehicle electrification has blurred the boundary between the sectors. With both the home and vehicle now relying upon the same energy source, interactions between the systems can no longer be neglected. For example, when tiered utility pricing schemes are considered, the energy consumption of each system affects the cost of the other. In this paper, the authors present an integrated Home-Vehicle Simulation Model (HVSM), allowing the designer to take a holistic view.
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

2013-04-08
2013-01-0569
Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Technical Paper

Noise Abatement of In-Plant Trailers

1980-02-01
800494
In-plant trailers constitute a large portion of material handling system in manufacturing plants of the automotive industry. The trailers are among the most intensive noise sources, with radiated noise reaching 110 dBA (Leq). High dynamic loads are also generated on the floor and in the trailer structure. These dynamic loads lead to maintenance problems and inflated inventory of the trailers. Principal mechanisms responsible for generating noise and dynamic loads are identified and treatments to reduce noise and dynamic loads have been developed and investigated on standard trailers. Test results show: for an empty trailer, application of the proposed nonlinear suspension reduces noise 16–18 dBA (Leq) and dynamic load 10 times; for a trailer with an empty rack, application of the proposed nonlinear rack cushion leads to 3–5 dBA (Leq) noise reduction in addition to 8–10 dBA (Leq) reduction due to the suspension.
X