Refine Your Search

Topic

Search Results

Technical Paper

Development of a One-Dimensional Engine Thermal Management Model to Predict Piston and Oil Temperatures

2011-04-12
2011-01-0647
A new, 1-D analytical engine thermal management tool was developed to model piston, oil and coolant temperatures in the Ford 3.5L engine family. The model includes: a detailed lubrication system, including piston oil-squirters, which accurately represents oil flow rates, pressure drops and component heat transfer rates under non-isothermal conditions; a detailed coolant system, which accurately represents coolant flow rates, pressure drops and component heat transfer rates; a turbocharger model, which includes thermal interactions with coolant, oil, intake air and exhaust gases (modeled as air), and heat transfer to the surroundings; and lumped thermal models for engine components such as block, heads, pistons, turbochargers, oil cooler and cooling tower. The model was preliminarily calibrated for the 3.5L EcoBoost™ engine, across the speed range from 1500 to 5500 rpm, using wide-open-throttle data taken from an early heat rejection study.
Technical Paper

Full Hybrid Electrical Vehicle Battery Pack System Design, CFD Simulation and Testing

2010-04-12
2010-01-1080
CFD analysis was performed using the FLUENT software to design the thermal system for a hybrid vehicle battery pack. The battery pack contained multiple modular battery elements, called bricks, and the inlet and outlet bus bars that electrically connected the bricks into a series string. The simulated thermal system was comprised of the vehicle cabin, seat cavity, inlet plenum, battery pack, a downstream centrifugal fan, and the vehicle trunk. The fan was modeled using a multiple reference frame approach. A full system analysis was done for airflow and thermal performance optimization to ensure the most uniform cell temperatures under all operating conditions. The mesh for the full system was about 13 million cells run on a 6-node HP cluster. A baseline design was first analyzed for fluid-thermal performance. Subsequently, multiple design iterations were run to create uniform airflow among all the individual bricks while minimizing parasitic pressure drop.
Technical Paper

A Predictive Model for Feedgas Hydrocarbon Emissions: An Extension to Warm Engine Maps

2005-10-24
2005-01-3862
A feedgas hydrocarbon emissions model that extends the usefulness of fully-warmed steady-state engine maps to the cold transient regime was developed for use within a vehicle simulation program that focuses on the powertrain control system (Virtual Powertrain and Control System, VPACS). The formulation considers three main sources of hydrocarbon. The primary component originates from in-cylinder crevice effects which are correlated with engine coolant temperature. The second component includes the mass of fuel that enters the cylinder but remains unavailable for combustion (liquid phase) and subsequently vaporizes during the exhaust portion of the cycle. The third component includes any fuel that remains from a slow or incomplete burn as predicted by a crank angle resolved combustion model.
Technical Paper

Examination of the Corrosion Behavior of Creep-Resistant Magnesium Alloys in an Aqueous Environment

2007-04-16
2007-01-1023
An electrochemical testing protocol for assessing the intrinsic corrosion-resistance of creep-resistant magnesium alloys in aqueous environments, and effects of passivating surface films anticipated to develop in the presence of engine coolants is under development. This work reports progress in assessing the relative corrosion resistance of the base metals (AMC-SC1, MRI-202S, MRI-230D, AM50 and 99.98% Mg) in a common test environment, based on a near-neutral pH buffered saline solution, found to yield particularly stable values for the open-circuit or corrosion potential. This approach was found to provide a platform for the eventual assessment of the durability of certain passivating layers expected to develop during exposure of the magnesium alloys to aqueous coolants.
Technical Paper

2005 Ford GT- Maintaining Your Cool at 200 MPH

2004-03-08
2004-01-1257
An integrated engineering approach using computer modeling, laboratory and vehicle testing enabled the Ford GT engineering team to achieve supercar thermal management performance within the aggressive program timing. Theoretical and empirical test data was used during the design and development of the engine cooling system. The information was used to verify design assumptions and validate engineering efforts. This design approach allowed the team to define a system solution quickly and minimized the need for extensive vehicle level testing. The result of this approach was the development of an engine cooling system that adequately controls air, oil and coolant temperatures during all driving and environmental conditions.
Technical Paper

CFD Quality - A Calibration Study for Front-End Cooling Airflow

1998-02-23
980039
There is a recognized need in the industry to improve the quality of our CFD (Computational Fluid Dynamics) processes. One part of that initiative is to measure the accuracy of the current processes and identify opportunities for improvement. This report documents the results of a disciplined calibration process that uses statistical analyses techniques to assess CFD quality. The process is applied to UH3D, a Navier-Stokes solver used at Ford to model vehicle front-end geometry and engine cooling systems. The study is focused on a Taurus under relatively ideal circumstances to address one of the major deliverables from the analytical process, i.e., what is the accuracy of the front-end cooling airflow predictions? To address this question, high quality isothermal experiments and calculations were conducted on twenty-three front-end configurations at four non-idle operating conditions.
Technical Paper

Cooling Inlet Aerodynamic Performance and System Resistance

2002-03-04
2002-01-0256
This report is a contribution to the understanding of inlet aerodynamics and cooling system resistance. A characterization of the performance capability of a vehicle front-end and underhood, called the ram curve, is introduced. It represents the pressure recovery/loss of the front-end subsystem - the inlet openings, underhood, and underbody. The mathematical representation, derived from several experimental investigations on vehicles and components, has four basic terms: Inlet ram pressure recovery; free-stream energy recovered when the vehicle is moving Basic inlet loss; inlet restriction when the vehicle is stationary Pressure loss of the engine bay Engine bay-exit pressure Not surprisingly, the amount of frontal projection of radiator area through the grille, bumper and front-end structure (called projected inlet area), and flow uniformity play a major role in estimating inlet aerodynamic performance.
Technical Paper

Dezincification Corrosion and Its Prevention for Copper/Brass Radiators

1983-12-05
831829
The use of a corrosion inhibited arsenical brass alloy for copper/brass radiator tubes has been identified as an effective means to protect the radiator tubes from external dezincification attack, which is generally caused by an exposure to excessive road salts in the regions such as Montreal and Toronto in Canada. Laboratory test methods, their results and field data verifying improved radiator life are presented.
Technical Paper

Vehicle Exhaust Particle Size Distributions: A Comparison of Tailpipe and Dilution Tunnel Measurements

1999-05-03
1999-01-1461
This paper explores the extent to which standard dilution tunnel measurements of motor vehicle exhaust particulate matter modify particle number and size. Steady state size distributions made directly at the tailpipe, using an ejector pump, are compared to dilution tunnel measurements for three configurations of transfer hose used to transport exhaust from the vehicle tailpipe to the dilution tunnel. For gasoline vehicles run at a steady 50 - 70 mph, ejector pump and dilution tunnel measurements give consistent results of particle size and number when using an uninsulated stainless steel transfer hose. Both methods show particles in the 10 - 100 nm range at tailpipe concentrations of the order of 104 particles/cm3.
Technical Paper

Hardware Effects on the Wear of Methanol-Fueled Engines

1984-10-01
841377
A 98-hour sequence test has been developed to study the wear of Ford OHC 2.3L methanol fueled engines. This test requires only half the test time of an ASTM Sequence V-D test used by many researchers, and yet provides sufficient severity to generate measurable bore wear to discriminate engine hardware changes. A portable fixture was designed to provide rapid, convenient, and accurate measurement of radial bore wear at a prescribed depth in the cylinder. The fixture can measure radial bore wear with accuracies to 0.004 mm. Its portability allows on-site measurement of engines on dynamometer test stands, or in vehicles with minimal engine disassembly. The test procedure and measurement fixture were used to quantitatively document the ring and bore wear effects of numerous variables, such as fuels, fully formulated lubricants, top ring configurations, coolant temperatures and flow patterns, intake heat addition, and fuel contamination.
Technical Paper

Impact of Computer Aided Engineering on Ford Light Truck Cooling Design and Development Processes

1993-04-01
931104
This paper presents the benefits of following a disciplined thermal management process during the design and development of Ford Light Truck engine cooling systems. The thermal management process described has evolved through the increased use of Computer Aided Engineering (CAE) tools. The primary CAE tool used is a numerical simulation technique within the field of Computational Fluid Dynamics (CFD). The paper discusses the need to establish a heat management team, develop a heat management model, construct a three dimensional CFD model to simulate the thermal environment of the engine cooling system, and presents CFD modeling examples of Ford Light Trucks with engine driven cooling fans.
Technical Paper

Using Experimental Modal Modeling Techniques to Investigate Steering Column Vibration and Idle Shake of a Passenger Car

1985-05-15
850996
An experimental modal model of an early prototype car was constructed and validated against test results. The model was then used to suggest practical hardware modification alternatives which would: (1) shift the steering column resonant frequency away from the idle range, and (2) maintain a low steering column tip vibration within the 600-750 RPM idle range. This model was also used to evaluate the effectiveness of tuning radiator mounts to the overall vehicle idle quality. It was found that a pair of braces from either the steering column bracket to brake pedal bracket or to the cowl top area could improve idle shake of the test vehicle. The driver side brake pedal brace alone is not effective. However, the passenger side brake pedal brace alone is as effective as the two brake pedal braces together. It was found that the radiator mounts on the test vehicle are extremely non-linear. Therefore, tuning the mount to improve idle quality is impractical.
Technical Paper

Lowered Fin Heat Sinks for Automotive Electronic Applications

1988-02-01
880449
The Electronic Automatic Temperature Control (EATC) system provides the customer with a continuously variable blower motor operation. The high current is controlled by a power transistor. This device, which is capable of dissipating over 100 watts, requires a heat sink capable of thermally conducting the heat source to atmosphere (figure 1). Louvered fin heat exchangers have already been optimized for use in radiators and condensors. The same technology, using vacuum brazing techniques, was applied to develop a heat sink for electrical components. To do so, power transistor operating and cycling temperatures, A/C system airflow and airflow velocity had to be considered. An operating system was designed where all of the design criteria were met.
Technical Paper

Corrosion of Cast Aluminum Alloys under Heat-Transfer Conditions

1981-02-01
810038
Most coolant formulations designed for cast iron engines are unsatisfactory for aluminum head/block use because of excessive heat-transfer corrosion, resulting in heavy corrosion product deposition and loss of cooling efficiency in the radiator. The effect of inhibitor and buffer additives, singly and in combination, on the heat-transfer corrosion rates for cast aluminum alloys was investigated. It was shown that some tetraborate and phosphate mixtures can be excessively corrosive. Silicate, in contrast, effectively protects the heat-transfer surfaces. In addition, the effects of heat-transfer surface temperature, nucleate boiling, and variations in glycol, dissolved oxygen and chloride concentrations on the heat-transfer corrosion rate were investigated.
Technical Paper

A Rapid Method to Predict the Effectiveness of Inhibited Engine Coolants in Aluminum Heat Exchangers

1980-06-01
800800
The galvanostatic polarization method was used to determine the pitting potentials of candidate wrought aluminum alloys in inhibited ethylene glycol engine coolants. It was shown that the relative value of the pitting potential is an excellent measure of the long-term effectiveness of the coolants in preventing spontaneous pitting and crevice attack in the aluminum heat exchangers. The long-term effectiveness was determined by metallographic examination of aluminum heat exchangers subjected to a four-month, 50,000 mile simulated service circulation test.
Technical Paper

Correlation of Exhaust Valve Temperatures with Engine Reynolds Number in a 1.9 L Engine

1992-02-01
920063
Exhaust valve temperatures are important in the selection of valve materials, and have strong effects on borderline spark angle and pre-ignition borderline limit. In order to support analytical modeling of exhaust valve temperatures and to correlate exhaust valve temperatures as a function of engine Reynolds number, exhaust valve temperatures were mapped as a function of spark angle and engine coolant temperatures at 2000 rpm. In addition temperatures were measured at wide open throttle at 2000, 3000, and 4000 rpm. The exhaust valve temperature was expressed as a dimensionless temperature using the exhaust gas temperature and the engine coolant temperature, then the dimensionless temperature was correlated as a function of spark angle and engine Reynolds number. The results indicate that once the temperature is known at a given speed and load condition for any one cylinder, the temperature at other speed and load conditions can be reasonably estimated.
Technical Paper

In-Vehicle Engine Coolant Void Fraction and De-aeration Monitoring Using a Computerized Electrical Conductivity Method

1997-02-24
970938
Instruments and analytical techniques are described for in-vehicle monitoring of amounts of air (void fraction) in engine coolant systems and for evaluating the performance of degas reservoirs. This method, based on electrical conductivity measurements of flowing air / coolant mixture, provides measurement, acquisition and display of coolant system temperature, pressure, flow rate, instantaneous void fraction and rate of air removal by degas bottle. Embedded temperature compensation equations are used for essentially real time display of the void fraction.
Technical Paper

A Model to Simulate the Behavior Automotive Thermostat

1997-05-19
971814
Computer simulation of the behavior of the automotive cooling system is becoming increasingly common, so as to reduce the dependency on costly testing. The simulation of transient cooling system behavior has become easier with the use of 1-D simulation tools. However, accurate prediction of transient coolant temperature after thermostat operation has been limited by the difficulty in accurately modeling the behavior of the automotive thermostat. Physical models of the thermostat are often inaccurate due to the complexity of the thermostat. Therefore an empirical model has been developed, which can be used to model any automotive thermostat, once a few simple tests have been conducted on the part. This thermostat model can be used in conjunction with a 1-D flow simulation tool to predict coolant transient temperature response during thermostat operation.
Technical Paper

Determination of the Effects of Inlet Air Velocity and Temperature Distributions on the Performance of an Automotive Radiator

1994-03-01
940771
In an automotive engine cooling system, the heat rejected to the coolant by the engine and other components is transferred to the air by the radiator. The cooling system engineer must predict the coolant inlet temperature (the top water temperature) for each operating conditions of interest. Computational fluid dynamics (CFD) computer programs have been developed to predict the cooling air flow velocities and temperatures entering the radiator. Radiator effectiveness is measured on a calorimeter with uniform air velocity and temperature entering the radiator. Computer programs have been developed to predict calorimeter performance for new radiators based on experimental data from existing components. In applying the calorimeter performance model to a vehicle, some means must be used to derate the performance slightly based on the non-uniform inlet air velocity and temperature distribution entering the radiator.
Technical Paper

Underhood Thermal Management by Controlling Air Flow

1995-02-01
951013
A series of tests were conducted to determine the potential for reducing vehicle underhood temperatures by either 1) diverting the radiator fan air flow from the engine compartment or 2) by forced air cooling of the exhaust manifold in conjunction with shielding it or 3) by a combination of the two methods. The test vehicle was a Ford F-250 Light Truck with a 7.5L V-8 engine. The vehicle was tested in a dynamometer cell equipped with cell blowers to simulate road speed conditions. It was found that diverting the outlet air from the radiator will reduce underhood component temperatures when the vehicle is in motion and also at normal idle. However, if the vehicle is to be used for power takeoff applications requiring a “kicked” idle, then forced cooling of the exhaust manifolds is also required to maintain reduced underhood temperatures. A combination of these two techniques maximized the reduction of underhood temperatures for all operating conditions tested.
X