Refine Your Search



Search Results


Future Development of EcoBoost Technology

Ford's EcoBoost GTDI engine technology (Gasoline Direct Injection, Turbo-charging and Downsizing) is being successfully implemented in the market place with the EcoBoost option accounting for significant volumes in vehicle lines as diverse as the F150 pickup truck, Edge CUV and the Lincoln MKS luxury sedan. A logical question would be what comes after GTDI? This presentation will review some of the technologies that will be required for further improvements in CO2, efficiency and performance building on the EcoBoost foundation as well as some of the challenges inherent in the new technologies and approaches. Presenter Eric W. Curtis, Ford Motor Co.
Technical Paper

Gear Whine Improvements for an Automatic Transmission through Design Retargeting and Manufacturing Variability Reduction

Gear whine in 1st gear for an automatic transmission that has been in production for nearly thirty years was identified as an NVH issue. Due to advances in vehicle level refinement, and reduction of other masking noises, the automatic transmission gear whine became an issue with the customer. Since the transmission was already in production, the improvements had to be within the boundaries of manufacturing feasibility with existing equipment to avoid costly and time consuming investment in new machines. The approach used was one of identifying optimum values of existing gear parameters to provide a reduction in passenger compartment noise. The problem was in a light truck application. Objective noise measurements were recorded for 10 transmissions from more than 50 driven in vehicles. The transmissions were disassembled and the gears inspected.
Technical Paper

Correlating Stressed Environmental Testing of Structural Composites to Service

A compact in-situ tensile stress fixture was designed for the study of the combined effects of stress and automotive environments on structural glass fiber-reinforced composite materials. With this fixture, a standardized 300 hour laboratory screening test was developed to compare the residual property loss of composite materials due to concurrent exposure to stress and environment. It is of great importance that the data gathered in the laboratory have correlation to on-vehicle (in-service) performance, and that both lab and real world data be taken with a test system (in-situ test fixtures) capable of providing accurate and consistent results under either test condition.
Technical Paper

Development of the Ford QVM CNG Bi-Fuel 4.9L F-Series Pickup Truck

A bi-fuel (Compressed Natural Gas [CNG] and gasoline) pickup truck has been developed using the Ford Alternative Fuel Qualified Vehicle Modifier (QVM) process. The base vehicle's 4.9L engine has been specially modified for improved durability on gaseous fuels. The base vehicle's configuration has been designed for conversion to bi-fuel CNG operation. A complete CNG fuel system has been designed and qualified, including fuel tanks, fuel system, and electrical interface. The completed vehicle has been safety and emission certified, demonstrating CARB Low Emission Vehicle (LEV) emissions in MY95. This paper details the design objectives, development process, CNG components, and integration of the two fuel systems.
Technical Paper

Development of a Door Test Facility for Implementing the Door Component Test Methodology

This paper describes the development of an automated Door Test Facility for implementing the Door Component Test Methodology for side impact analysis. The automated targeting and loading of the door inner/trim panels with Side Impact Dummy (SID) ribcage, pelvis, and leg rams will greatly improve its test-to-test repeatability and expedite door/trim/armrest development/evaluation for verification with the dynamic side impact test of FMVSS 214 (Occupant Side Impact Protection). This test facility, which is capable of evaluating up to four (4) doors per day, provides a quick evaluation of door systems. The results generated from this test methodology provide accurate input data necessary for a MADYMO Side Impact Simulation Model. The test procedure and simulation results will be discussed.
Technical Paper

High Frequency NVH Analysis of Full Size Pickups Using “SEAM”

The recent surveys of customer satisfaction regarding full size pickup trucks have created new mandates in performance of such vehicles. The customers for this class of vehicles demand new frontiers in attributes such as NVH, ride and handling performance that previously only belonged to the luxury passenger cars. The full size pickup truck in question must retain a tough image and be as durable as the previous generation truck that it replaces. But it also needs to be user friendly in order for one to drive it like an every day passenger car on a daily basis. The challenge is to design for the NVH performance that matches and surpasses many well behaved and “good” NVH passenger cars without any compromise in durability performance. An NVH 7-8 subjective rating performance is targeted for the design of full size pickup truck during vehicle operation.
Technical Paper

Commercial Van Diesel Idle Sound Quality

The customer's perception of diesel sounds is receiving more attention since diesel engines are being used more frequently in recent years. This paper summarizes the results of a study investigating the sound quality of diesel idle sounds in eight vans and light trucks. Subjective evaluations were conducted both in the US and the UK so that a comparison could be made. Paired comparison of annoyance and semantic differential subjective evaluation techniques were used. Correlation analysis was applied to the subjective evaluation results to determine annoying characteristics. Subjective results indicated that most annoyance rankings were similar for both the US and UK participants, with some specific differences. Correlation of objective measures to annoyance indicated a high correlation to ISO 532B loudness, dBA and kurtosis in the 1.4 kHz to 4 kHz range (aimed at quantifying the impulsiveness perception).
Technical Paper

Emissions from Diesel Vehicles with and without Lean NOx and Oxidation Catalysts and Particulate Traps

The regulated and non-regulated emissions of a current diesel passenger car and two light-duty diesel trucks with catalysts and particulate traps were measured to better understand the effects of aftertreatment devises on the environment. The passenger car, a 1.8 L IDI TC Sierra, was tested both with and without three different diesel oxidation catalysts (DOC) and with two fuel sulfur levels, 0 and 0.05 wt%. One light-duty truck, a 2.5 L DI NA Transit, was tested on one fuel, 0.05 wt% sulfur, with and without three different particulate trap/regeneration systems and with and without a urea lean NOx catalyst (LNC) system. A second similar Transit was tested on the 0.05 wt% sulfur fuel with an electrically regenerated trap system. The results are compared to each other, regulated emission standards, and to emissions from gasoline vehicles.
Technical Paper

Underhood Thermal Management by Controlling Air Flow

A series of tests were conducted to determine the potential for reducing vehicle underhood temperatures by either 1) diverting the radiator fan air flow from the engine compartment or 2) by forced air cooling of the exhaust manifold in conjunction with shielding it or 3) by a combination of the two methods. The test vehicle was a Ford F-250 Light Truck with a 7.5L V-8 engine. The vehicle was tested in a dynamometer cell equipped with cell blowers to simulate road speed conditions. It was found that diverting the outlet air from the radiator will reduce underhood component temperatures when the vehicle is in motion and also at normal idle. However, if the vehicle is to be used for power takeoff applications requiring a “kicked” idle, then forced cooling of the exhaust manifolds is also required to maintain reduced underhood temperatures. A combination of these two techniques maximized the reduction of underhood temperatures for all operating conditions tested.
Technical Paper

A Study on Ride-Down Efficiency and Occupant Responses in High Speed Crash Tests

In vehicle crash tests, an unbelted occupant's kinetic energy is absorbed by the restraints such as an air bag and/or knee bolster and by the vehicle structure during occupant ride-down with the deforming structure. Both the restraint energy absorbed by the restraints and the ride-down energy absorbed by the structure through restraint coupling were studied in time and displacement domains using crash test data and a simple vehicle-occupant model. Using the vehicle and occupant accelerometers and/or load cell data from the 31 mph barrier crash tests, the restraint and ride-down energy components were computed for the lower extremity, such as the femur, for the light truck and passenger car respectively.
Technical Paper

The New Ford Aeromax and Louisville Heavy Trucks: A Case Study in Applying Polar Plot Techniques to Vehicle Design

One of the major goals in the design of the new Ford Aeromax and Louisville heavy truck product line was to achieve competitive leadership in visibility. Market research found that visibility was an important issue to the heavy truck driver. Visibility is defined as both direct and indirect (i.e., the driver's ability to see with and without the use of supplemental vision devices such as mirrors) and both interior and exterior. The scope of this paper includes the work which was accomplished in evaluating direct and indirect exterior visibility and the resulting vehicle design which achieved Ford's leadership goals. Poor weather visibility and interior vision are beyond the scope of this paper. Polar Plots were the method of choice in the Aeromax/Louisville visibility studies. Industry acceptance of these techniques has been established in the recent approval of SAE J1750, “Evaluating the Truck Driver's Viewing Environment”.
Technical Paper

Durability Analysis of Pickup Trucks Using Non-Linear FEA

One of the difficulties in predicting the structural behavior of vehicles such as the full size pickup trucks is the non-linearities involved during the course of the durability events. The current practice in durability and fatigue life prediction of vehicles is to conduct fatigue analysis on the structure using the measured road loads and estimate the fatigue incurred using the in-house and commercially available programs. In this paper the authors attempt to seek a different solution to the durability problem by conducting an upfront non-linear analysis. The results are then compared with the prediction by the fatigue life program in addition to the durability test results obtained on the early prototypes. To conduct the non-linear analysis ABAQUS FEA program is chosen for this investigation and for the linear analysis MSC/NASTRAN is utilized. Subsequently in-house fatigue program is used to predict the fatigue incurred.
Technical Paper

Vehicle Closure Sound Quality

This paper describes an investigation into the sound quality of passenger car and light truck closure sounds. The closure sound events that were studied included side doors, hoods, trunklids, sliding doors, tailgates, liftgates, and fuel filler doors. Binaural recordings were made of the closure sounds and presented to evaluators. Both paired comparison of preference and semantic differential techniques were used to subjectively quantify the sound quality of the acoustic events. Major psychoacoustic characteristics were identified, and objective measures were then derived that were correlated to the subjective evaluation results. Regression analysis was used to formulate models which can quantify customers perceptions of the sounds based on the objectively derived parameters. Many times it was found that the peak loudness level was a primary factor affecting the subjective impression of component quality.
Technical Paper

Integration of Vehicle Interior Models into Crash Up-Front Process with Optimization

The evolution of computer technology has made CAE ( Computer Aided Engineering ) an integral part of the total vehicle development process. Particularly for crash development, up-front input is crucial in determining vehicle architecture, performing trade off studies and setting design targets. Detailed FEA ( Finite Element Analysis ), although more accurate, is not always suitable at this stage due to (1) the lack of Detailed design information and (2) the large amount of modelling and analysis efforts. Concept/Hybrid models, however, can provide important input to make early design decisions without a detailed design. This paper uses a concept model to illustrate the above mentioned point. The model contains, the interior structure of a pick-up truck, driver occupant, restraints, and a detailed steering column assembly. Correlation with a physical test demonstrates the reliability of the model. Several restraint parameters which influence occupant performance are identified.
Technical Paper

A General Formulation for Topology Optimization

Topology optimization is used for obtaining the best layout of vehicle structural components to achieve predetermined performance goals. Unlike the most common approach which uses the optimality criteria methods, the topology design problem is formulated as a general optimization problem and is solved by the mathematical programming method. One of the major advantages of this approach is its generality; thus it can solve various problems, e.g. multi-objective and multi-constraint problems. The MSC/NASTRAN finite element code is employed for response analyses. Two automotive examples including a simplified truck frame and a truck frame crossmember are presented.
Technical Paper

A New Approach for Weight Reduction in Truck Frame Design

A new, systematic, sensitivity based design process for weight reduction is presented. Traditionally, a trial and error method is used when a design fails to meet the weight and the design criteria, which often conflict. This old approach not only is time and cost consuming but also does not provide insight into structural behavior. This proposed process uses state-of-the-art technologies such as design sensitivity analysis, numerical optimization, graphical user interface, etc. It handles multi-discipline design criteria simultaneously and provides design engineers insight into structural responses for frequency, durability, and stiffness concerns and a means for systematic weight reduction and quality improvement. The new design process has been applied for the weight reduction of advanced truck frame designs. Results show that a significant weight savings has been achieved while all design criteria are met.
Technical Paper

Impact of Computer Aided Engineering on Ford Motor Company Light Truck Cooling Design and Development Processes

This paper presents the benefits of following a disciplined thermal management process during the design and development of Ford Light Truck engine cooling systems. The thermal management process described has evolved through the increased use of Computer Aided Engineering (CAE) tools. The primary CAE tool used is a numerical simulation technique within the field of Computational Fluid Dynamics (CFD). The paper discusses the need to establish a heat management team, develop a heat management model, construct a three dimensional CFD model to simulate the thermal environment of the engine cooling system, and presents CFD modeling examples of Ford Light Trucks with engine driven cooling fans.
Technical Paper

Diesel Fuel Delivery Module for Light Truck Applications

This paper reviews the design and development of a self-filling, in-tank fuel system reservoir intended for use in diesel engine vehicle applications. This new idea eliminates engine driveability concerns (stumbles, hesitations, stalling, etc.) associated with an inconsistent supply of fuel from the fuel tank to the engine, particularly during sudden vehicle maneuvers and with low fuel tank conditions.
Technical Paper

Impact of Computer Aided Engineering on Ford Light Truck Cooling Design and Development Processes

This paper presents the benefits of following a disciplined thermal management process during the design and development of Ford Light Truck engine cooling systems. The thermal management process described has evolved through the increased use of Computer Aided Engineering (CAE) tools. The primary CAE tool used is a numerical simulation technique within the field of Computational Fluid Dynamics (CFD). The paper discusses the need to establish a heat management team, develop a heat management model, construct a three dimensional CFD model to simulate the thermal environment of the engine cooling system, and presents CFD modeling examples of Ford Light Trucks with engine driven cooling fans.
Technical Paper

Two Piece Composite Truck Cab

This report is a comprehensive investigation into the use of resin transfer molded glass fiber reinforced plastics in a structural application. A pickup truck cab structure is an ideal application for plastic composites. The cab is designed to fit a production Ranger pickup truck and uses carryover frame and front end structure. The cab concept consists primarily of two molded pieces. This design demonstrates extensive parts integration and allows for low-cost tooling, along with automated assembly.