Refine Your Search

Topic

Author

Search Results

Journal Article

Deformation Analysis of Incremental Sheet Forming

2010-04-12
2010-01-0991
Incremental Sheet Forming (ISF) is an emerging sheet metal prototyping technology where a part is formed as one or more stylus tools are moving in a pre-determined path and deforming the sheet metal locally while the sheet blank is clamped along its periphery. A deformation analysis of incremental forming process is presented in this paper. The analysis includes the development of an analytical model for strain distributions based on part geometry and tool paths; and numerical simulations of the forming process with LS-DYNA. A skew cone is constructed and used as an example for the study. Analytical and numerical results are compared, and excellent correlations are found. It is demonstrated that the analytical model developed in this paper is reliable and efficient in the prediction of strain distributions for incremental forming process.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

2014-04-01
2014-01-0803
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Journal Article

Simulation and Optimization of an Aluminum-Intensive Body-on-Frame Vehicle for Improved Fuel Economy and Enhanced Crashworthiness - Front Impacts

2015-04-14
2015-01-0573
Motivated by a combination of increasing consumer demand for fuel efficient vehicles, more stringent greenhouse gas, and anticipated future Corporate Average Fuel Economy (CAFE) standards, automotive manufacturers are working to innovate in all areas of vehicle design to improve fuel efficiency. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, reducing vehicle weight by using lighter materials and/or higher strength materials has been identified as one of the strategies in future vehicle development. Weight reduction in vehicle components, subsystems and systems not only reduces the energy needed to overcome inertia forces but also triggers additional mass reduction elsewhere and enables mass reduction in full vehicle levels.
Journal Article

Influence of Test Procedure on Friction Behavior and its Repeatability in Dynamometer Brake Performance Testing

2014-09-28
2014-01-2521
The efforts of the ISO “Test Variability Task Force” have been aimed at improving the understanding and at reducing brake dynamometer test variability during performance testing. In addition, dynamometer test results have been compared and correlated to vehicle testing. Even though there is already a vast amount of anecdotal evidence confirming the fact that different procedures generate different friction coefficients on the same brake corner, the availability of supporting data to the industry has been elusive up to this point. To overcome this issue, this paper focuses on assessing friction levels, friction coefficient sensitivity, and repeatability under ECE, GB, ISO, JASO, and SAE laboratory friction evaluation tests.
Technical Paper

Service Bay Diagnostic System

1986-10-20
861030
The Service Bay Diagnostic System (SBDS) will be designed to assist the dealership technician in diagnosing and repairing Ford Motor vehicles. The system hardware will be configured around a Service Bay Computer with mass storage capability and auxiliary service equipment. Major system features include: guided service writer/customer interaction, interactive vehicle diagnostics, information management. capabilities, and an additional aid to identifying intermittent failures through the use of a portable over-the-road data acquisition device. In order to assist the technician in properly diagnosing the causal factor, the Service Bay Computer System will also be enhanced through the use of an expert system knowledge base.
Journal Article

Effects of Fuel Octane Rating and Ethanol Content on Knock, Fuel Economy, and CO2 for a Turbocharged DI Engine

2014-04-01
2014-01-1228
Engine dynamometer testing was performed comparing fuels having different octane ratings and ethanol content in a Ford 3.5L direct injection turbocharged (EcoBoost) engine at three compression ratios (CRs). The fuels included midlevel ethanol “splash blend” and “octane-matched blend” fuels, E10-98RON (U.S. premium), and E85-108RON. For the splash blends, denatured ethanol was added to E10-91RON, which resulted in E20-96RON and E30-101 RON. For the octane-matched blends, gasoline blendstocks were formulated to maintain constant RON and MON for E10, E20, and E30. The match blend E20-91RON and E30-91RON showed no knock benefit compared to the baseline E10-91RON fuel. However, the splash blend E20-96RON and E10-98RON enabled 11.9:1 CR with similar knock performance to E10-91RON at 10:1 CR. The splash blend E30-101RON enabled 13:1 CR with better knock performance than E10-91RON at 10:1 CR. As expected, E85-108RON exhibited dramatically better knock performance than E30-101RON.
Technical Paper

Dynamic Durability Analysis of Automotive Structures

1998-02-23
980695
Since the environment of vehicle operation is dynamic in nature, dynamic methods should be used in vehicle durability analysis. Due to the constraints in current computer resources, simulation of vehicle durability tests and structural fatigue life assessment need special approaches and efficient CAE tools. The purpose of this paper is to present an efficient methodology and a feasible vehicle dynamic durability analysis process. Two examples of structural durability analysis using transient dynamics are given. The examples show that vehicle stress analysis and fatigue life prediction using dynamic method is now feasible by employing the presented method and process.
Technical Paper

Measurement of Acoustical Response of Automotive Cabin Interior

1990-02-01
900047
We report measurements of interior automotive cabin forced acoustical response (SPL) as a function of frequency from 1 Hz to 200 Hz. The acoustical response was measured at eight positions in the vehicle tested, approximating the positions of passengers and points in between passengers. Variances in experimental data arising from the manner in which measuring equipment is setup in a particular vehicle are reported, and variations in data taken in similarly equipped vehicles are also reported. The purpose of these tests is to determine the measurement variability of a typical vehicle acoustic test.
Technical Paper

Powertrain Applications for Rapid Prototyping, Fabrication and Tooling in Motorsports

1998-11-16
983091
Rapid Prototyping, Fabrication and Tooling is a process that blends a series of technologies (machines, tools, and methods) capable of generating physical objects directly from a CAD database. The process dramatically reduces the time spent during product development by allowing for fast visualization, verification, iteration, optimization, and fabrication of parts and tools. Many new techniques of tooling have been and are being developed by using rapid fabricated parts. These are having a dramatic impact on both timing and costs throughout the automotive industry. One area that these methods can be utilized to their full potential is motorsports. Of particular interest is the growing use of bridge tooling to provide first article through production intent parts that promote cost effective changes.
Technical Paper

Composite Impact Analysis of Race Cars - Technology Transfer to Passenger Car Development

1998-11-16
983092
There are a number of benefits from Ford Motor Company's participation in motorsports. This paper will describe how an engineering team developed a CAE process to assist in the design of a race car to meet impact requirements, with the technology transfer benefit of improved impact performance of composite structures in passenger cars. In 1997/98, a CAE process was developed and applied in the design and test of Formula One race car composite impact structures. For this particular engineering effort, a Ford proprietary software program, COMP-COLLAPSE, was the primary analysis tool that was utilized to successfully predict impact performance. As a result, COMP-COLLAPSE was used extensively in the design of race car composite impact structures. There were two beneficiaries from this effort: Race Vehicles: Improved vehicle impact performance as well as design improvement in crush efficiency, packaging, weight, and manufacturing.
Technical Paper

Methods for Modeling and Code Generation for Custom Lookup Tables

2010-04-12
2010-01-0941
Lookup tables and functions are widely used in real-time embedded automotive applications to conserve scarce processor resources. To minimize the resource utilization, these lookup tables (LUTs) commonly use custom data structures. The lookup function code is optimized to process these custom data structures. The legacy routines for these lookup functions are very efficient and have been in production for many years. These lookup functions and the corresponding data structures are typically used for calibration tables. The third-party calibration tools are specifically tailored to support these custom data structures. These tools assist the calibrators in optimizing the control algorithm performance for the targeted environment for production. Application software typically contains a mix of both automatically generated software and manually developed code. Some of the same calibration tables may be used in both auto generated and hand-code [ 1 ] [ 2 ].
Technical Paper

Constant Q Transform for Automotive NVH Signal Analysis

2010-10-06
2010-36-0373
The constant Q transform consists of a geometrically spaced filter bank, which is close to the wavelet transform due to the feature of its increasing time resolution for high frequencies. On the other hand, it can be processed using the well-known FFT algorithm. In this sense, this tool is a middle term between Fourier and wavelet analyses, which can be used for stationary and non-stationary signals. Automotive NVH signals can be stationary (e.g., idle, cruise) or non-stationary, i.e., time-varying signals (e.g., door closing/opening, run-up, rundown). The objective of this work is to propose the use of the constant Q transform, developed originally for musical signal processing, for automotive NVH (run up, impact strip and door closing) time-frequency analyses. Also, similarities and differences of the proposed tool when compared with Fourier and wavelet analyses are addressed.
Technical Paper

The Estimation of SEAT Values from Transmissibility Data

2001-03-05
2001-01-0392
Seat Effective Amplitude Transmissibility (SEAT) values can be obtained from direct measurements at seat track and top or estimated from transmissibility data and seat track input. Vertical transmissibility was measured for sixteen seats and six subjects on the Ford Vehicle Vibration Simulator, and these 96 functions used to estimate the seat top response for rough road input. SEAT values were calculated, and good correlation to values computed from direct seat top measurements obtained (R2 of 0.86). Averaging transmissibilities and direct seat measurements over the 6 subjects to obtain correlations for the 16 seats improved R2 to 0.94, validating this approach.
Technical Paper

Finite element simulation of drive shaft in truck/SUV frontal crash

2001-06-04
2001-06-0106
Drive shaft modelling effects frontal crash finite element simulation. A 35 mph rigid barrier impact of a body on frame SUV with an one piece drive shaft and a unibody SUV with a two piece drive shaft have been studied and simulated using finite element analyses. In the model, the drive shaft can take significant load in frontal impact crash. Assumptions regarding the drive shaft model can change the predicted engine motion in the simulation. This change influences the rocker @ B-pillar deceleration. Two modelling methods have been investigated in this study considering both joint mechanisms and material failure in dynamic impact. Model parameters for joint behavior and failure should be determined from vehicle design information and component testing. A body on frame SUV FEA model has been used to validate the drive shaft modeling technique by comparing the simulation results with crash test data.
Technical Paper

Improved Low-Emission Vehicle Simulator for Evaluation of Sampling and Analytical Systems

2002-03-04
2002-01-0049
The Vehicle Exhaust Emissions Simulator was developed to evaluate the performance of vehicle emissions sampling and analytical systems. The simulator produces a representative tailpipe volume flow rate containing up to five emission constituents, injected via mass flow controllers (MFCs). Eliminating the variability of test results associated with the vehicle, driver, and dynamometer makes the simulator an ideal quality control tool for use in commissioning new test cells, checking data correlation between test cells, and evaluating overall system performance. Earlier vehicle emissions simulators being used in the industry were primarily for checking Constant Volume Samplers (CVSs) and Bag Benches but they did not have the ability to properly simulate tailpipe volume.
Technical Paper

Evolution of Automotive Test Equipment in the Service Bay

2011-04-12
2011-01-0750
Most people still remember the introduction of the IBM PC in 1981 and the first Microsoft Windows operating system in 1985. These were the pioneering technologies that started a revolution in automotive test equipment in the service bay. What was once a purely mechanical garage environment where information was published annually in large paper manuals has evolved into a highly technical computing environment. Today vehicle networks link onboard vehicle control systems with diagnostic systems and updated service information is published daily over the Internet. A lot has changed over the last twenty years, and manufacturers of diagnostic test equipment are learning to deal with the constantly evolving computing platforms and host operating systems. This paper traces the history of automotive diagnostic equipment at Ford Motor Company and shares some of the hard lessons learned from the early systems.
Technical Paper

Automatic Verification of Embedded Software of Automotive Electronic Modules based on Program Traces Executions

2011-10-04
2011-36-0367
The development of embedded systems in automotive environment has brought a strong expansion in the number of applications dependent of programmable devices. A failure in any of these systems may cause different types of damages. Therefore, it requires a high confidence in their operation. Many of these faults are inserted during the coding process. A tool for formal verification of the implemented code could allow the detection of possible errors that could not be encountered during the testing phase. In this paper, we propose a method for verifying software from the reduced model of the software built automatically with information from multiple traces of program executions. To illustrate the application of the proposed method a case study for an automotive electronic module that controls the windshield wiper is presented.
Technical Paper

System Simulation and Analysis of EPA 5-Cycle Fuel Economy for Powersplit Hybrid Electric Vehicles

2013-04-08
2013-01-1456
To better reflect real world driving conditions, the EPA 5-Cycle Fuel Economy method encompasses high vehicle speeds, aggressive vehicle accelerations, climate control system use and cold temperature conditions in addition to the previously used standard City and Highway drive cycles in the estimation of vehicle fuel economy. A standard Powersplit Hybrid Electric Vehicle (HEV) system simulation environment has long been established and widely used within Ford to project fuel economy for the standard EPA City and Highway cycles. Direct modeling and simulation of the complete 5-Cycle fuel economy test set for HEV's presents significant new challenges especially with respect to modeling vehicle thermal management system and interactions with HEV features and system controls. It also requires a structured, systematic approach to validate the key elements of the system models and complete vehicle system simulations.
Technical Paper

An Evaluation of Various Viscous Criterion Computational Algorithms

1993-03-01
930100
The viscous criterion (V*C) has been proposed by biomechanics researchers as a generic biomechanical index for potential soft tissue injury. It is defined by the product of the velocity of deformation and the instantaneous compression of torso and abdomen. This criterion requires calculation and differentiation of measured torso/abdomen compression data. Various computational algorithms for calculating viscous criterion are reviewed and evaluated in this paper. These include methods developed by Wayne State University (WSU), NHTSA (DOT) and Ford. An evaluation has been conducted considering the accuracy of these algorithms with both theoretical and experimental data from dummy rib compressions obtained during a crash test. Based on these results, it is found that: V*C results depend on the scheme used in the computation process, the sampling rate and filtering of original raw data. The NHTSA method yields the lowest V*C value.
X