Refine Your Search



Search Results


The Future (& Past) of Electrified Vehicles

The presentation offers a brief history of the electric vehicle and parallels the realities of those early vehicles with the challenges and solutions of the electrified vehicles coming to market today. A technology evolution for every major component of these vehicles has now made this mode of transportation viable. The Focus Electric is Ford's first electric passenger car utilizing the advanced technology developments to meet the needs of electric car buyers in this emerging market. Presenter Charles Gray, Ford Motor Co.

Future Development of EcoBoost Technology

Ford's EcoBoost GTDI engine technology (Gasoline Direct Injection, Turbo-charging and Downsizing) is being successfully implemented in the market place with the EcoBoost option accounting for significant volumes in vehicle lines as diverse as the F150 pickup truck, Edge CUV and the Lincoln MKS luxury sedan. A logical question would be what comes after GTDI? This presentation will review some of the technologies that will be required for further improvements in CO2, efficiency and performance building on the EcoBoost foundation as well as some of the challenges inherent in the new technologies and approaches. Presenter Eric W. Curtis, Ford Motor Co.

Ford: Driving Electric Car Efficiency

The Focus Electric is Ford�s first full-featured 5 passenger battery electric vehicle. The engineering team set our sights on achieving best-in-class function and efficiency and was successful with an EPA certified 1XX MPGe and range XXX then the facing competition allowing for a slightly lower capacity battery pack and larger vehicle without customer trade-off. We briefly overview the engineering method and technologies employed to deliver the results as well as sharing some of the functional challenges unique to this type of vehicle. Presenter Charles Gray, Ford Motor Co.
Technical Paper

Frictional and Acoustic Behavior of Automotive Interior Polymeric Material Pairs Under Environmental Conditions

As automotive manufacturers continue to increase their use of thermoplastics for interior and exterior components, there is a likelihood of squeaks due to material contacts. To address this issue, Ford's Body Chassis NVH Squeak and Rattle Prevention Engineering Department has developed a tester that can measure friction, and any accompanying audible sound, as a function of sliding velocity, normal load, surface roughness, and environmental factors. The Ford team has been using the tester to address manufacturing plant issues and to develop a database of polymeric material pairings that will be used as a guide for current and future designs to eliminate potential noise concerns. Based upon the database, along with a physical property analysis of the various plastic (viscoelastic) materials used in the interior, we are in the process of developing an analytical model which will be a tool to predict frictional behavior.
Technical Paper

Identification of the Optimum Vehicle Class for the Application of 42v Integrated Starter Generator

Today nearly all automotive manufacturers are developing motor-generator systems for improved fuel economy by implementing idling-stop and other power train enhancements. It is said that powertrain technology has always pioneered the development of automotive electronic control throughout history. The integrated starter generator (ISG) promises to expand the scope of powertrain control further through fuel economy improvement, emissions reduction, longitudinal vehicle dynamics improvement and customer feature enhancements. At the present time the cost imposed by usage of an ISG system is very high due mainly to its need for a power optimized 42V battery and high power electronics. This paper takes a critical look at the vehicle benefits attributable to ISG and its implementation costs over various vehicle classes.
Technical Paper

Statistical Analysis of Vehicle High Mileage NVH Performance

High mileage NVH performance is one of the major concerns in vehicle design for long term customer satisfaction. The current paper is concerned with performance analysis of high mileage vehicles which cover four automobile manufacturers and five vehicle families of the same weight class based on subjective evaluation data. The analysis includes the assessment of five vehicle families from the following aspects: overall and NVH performances, performance by individual attribute, degradation history of each vehicle family, performance variation within each vehicle family. Since the data are statistical in nature, statistical methods are employed, numerically and graphically, in the analysis. The performance categories which exhibit most degradation are identified. The analysis method presented in this paper is applicable to any high mileage vehicle fleet subjective data. The knowledge derived in the study can be used as a guideline in designing vehicles for high mileage NVH robustness.
Technical Paper

Exhaust Valve Seat Leakage

A 1.9L four cylinder engine was evaluated for leakage of cylinder charge through the exhaust valve seats. Fast FID HC analyzer traces reveal leakage. Static leakdown tests do not correlate with the Fast FID measurement, unlike previously published reports for a different engine. The causes of exhaust valve seat leakage are likely to be Flakes of cylinder deposits lodging in the valve seat Valve seat distortion due to the thermal and pressure loading of the cylinder head structure Because deposit related effects are very history dependent, it is very difficult to obtain quantitative results. Some experimental observations: Static pressure leakage measurements show variation of leakage area with cylinder pressure, caused by flexing of the valve head. Dynamic leakage results are history dependent. Leakage is reduced after running at high speed/load, and gradually build up during extended light load low speed operation.
Technical Paper

Regimes of Premixed Turbulent Combustion and Misfire Modeling in SI Engines

A review of flame kernel growth in SI engines and the regimes of premixed turbulent combustion showed that a misfire model based on regimes of premixed turbulent combustion was warranted[1]. The present study will further validate the misfire model and show that it has captured the dominating physics and avoided extremely complex, yet inefficient, models. Results showed that regimes of turbulent combustion could, indeed, be used for a concept-simple model to predict misfire limits in SI engines. Just as importantly, the entire regimes of premixed turbulent combustion in SI engines were also mapped out with the model.
Technical Paper

Incremental Multiaxial Neuber Correction for Fatigue Analysis

Estimations of the elastic-plastic stress states at notches from elastic finite element results based on Neuber type of correction method have proven very useful for many engineering problems. While this approximation technique has been regularly used in simple fatigue analysis of components subjected to predominantly uniaxial loading, its extension into multiaxial cases has been limited to monotonic loading. This paper presents a technique which integrates the Neuber type of correction method with a three-dimensional cyclic stress-strain model. Three major elements are involved: 1) an assumed elastic-plastic loading path; 2) a one-to-one relationship between the given elastic and the corrected elastic-plastic loading history; and 3) a plasticity model for multiaxial cyclic stress-strain analysis. The technique is then illustrated to be capable of estimating complex yet stable cyclic stress and strain histories at a notch.
Technical Paper

Methods for Analyzing Order Spectra

Since many automobile NVH issues involve the analysis of order spectra it is highly important that the methods used should be accurate and consistent. A review of the literature shows little discussion of several key issues which could cause problems and possibly invalidate test results. Also, experience indicates that different methods may yield different results unless these key issues are dealt with. This paper compares four different approaches to order tracking as applied to typical engine sweep data: order analysis of conventional fixed frequency waterfall plots, synchronous sampling order tracking, computed digital order tracking, and Kalman filtering. It is shown that unless the analysis parameters are carefully chosen the results of the analysis may be in error. The major issues for the conventional fixed sampling rate waterfall method arise because sweeping the orders causes a frequency smearing effect.
Technical Paper

Fuel Structure and the Nature of Engine-Out Emissions

For several years, a single-cylinder, spark-ignited engine without catalyst has been operated at Ford on single-component fuels that are constituents of gasoline as well as on simple fuel mixtures. This paper presents a review of these experiments as well as others pertinent to understanding hydrocarbon emissions. The engine was run at four steady-state conditions which are typical of normal operation. The fuel structure and the engine operating conditions affected both the total HC emissions and the reactivity of these emissions for forming photochemical smog in the atmosphere. These experiments identified major precursor species of the toxic HC emissions benzene and 1,3-butadiene to be alkylated benzenes and either straight chain terminal olefins or cyclic alkanes, respectively. In new data presented, the primary exhaust hydrocarbon species from MTBE combustion is identified as isobutene.
Technical Paper

Rapid Characterization of I.C. Engine In-Cylinder Flow at Spark: A Synergistic Approach Using Experimental and Numerical Simulations

A new methodology for rapidly characterizing the in-cylinder flow field at spark ignition for internal combustion engines is described in this paper. The process involves the use of 3-D particle tracking velocimetry to measure the flow field at intake valve closing (IVC) in a water analog engine simulation, and the use of CFD to compute the evolution of the measured flow field during the compression stroke, by using the experimental 3-D PTV results at IVC as the initial condition for the calculations. The technique has been applied to investigate the in-cylinder flow field of a typical 4 valve engine operating in two different modes; one or two intake ports active. The results indicate that in either mode the flow field at IVC is dominated by a different large scale structure: tumble in the case where both intake ports are active and swirl in the case where only one port is active. The results also indicate that these structures evolve differently during the compression stroke.
Technical Paper

Oscillating Heat Transfer in Reversing Pipe Flow

Oscillating heat transfer is a fundamental phenomenon occurring in Stirling machines and IC engines. A group of relevant dimensionless numbers which characterize this problem is identified by dimensional analysis. The convective heat transfer coefficient, or Nusselt number, is a function of the Reynolds number, the Prandtl number, plus the dynamic Reynolds number and the dimensionless amplitude, when compressibility is not considered. The case for compressible fluid is more complicated. An experiential study confirms above analysis and results in a nonlinear longitudinal fluid temperature distribution in the pipe. The history effect is found to affect the heat transfer rate remarkably. A correlation equation for Nusselt number is obtained by multivariate analysis.
Technical Paper

A Review of the Dual EGO Sensor Method for OBD-II Catalyst Efficiency Monitoring

This paper provides an overview of the dual EGO sensor method for OBD-II catalyst efficiency monitoring. The processes governing the relationship between catalyst oxygen storage, HC conversion efficiency, and rear EGO sensor response are reviewed in detail. A simple physical model relating catalyst oxygen storage capacity and rear EGO sensor response is constructed and used in conjunction with experimental data to provide additional insight into the operation of the catalyst monitor. The effect that the catalyst washcoat formulation has in determining the relationship between catalyst oxygen storage capacity and HC conversion efficiency and its impact on the catalyst monitor is also investigated. Lastly, the effects of catalyst failure mode, fuel sulfur, and the fuel additive MMT on the catalyst monitor's ability to properly diagnose catalyst function are discussed.
Technical Paper

A Brief History of Auto Radio Styling

“There's nothing new under the sun,” the old proverb says. But you only have to read a magazine, scan a periodical, listen to the radio, watch television, or glance at the multitude of ads that promise that such and such product is the latest trend or has up-to-date, state-of-the-art technology, to seemingly prove the old proverb wrong. However, old proverbs become old because they withstand the test of time. In this case, a hasty judgement should be withheld. Currently, as in the past, the above holds true for car radios as well. Whether in the United States, Europe, Canada or Latin America, the public has always been susceptible to last minute technological advances. It is curious then, that as far as car radio styling is concerned, their appearance has been typically rather conservative, and that it is only recently that styling has begun to change to be more in tune with the times.
Technical Paper

Biaxial Torsion-Bending Fatigue of SAE Axle Shafts

Variable amplitude torsion, bending, and combined torsion and bending fatigue tests were performed on an axle shaft. The moment inputs used were taken from the respective history channels of a cable log skidder vehicle axle. Testing results indicated that combined variable amplitude loading lives were shorter than the lives of specimens subjected to bending or torsion alone. Calculations using strain rosette readings indicated that principle strains were most active around specific angles but also occurred with lesser magnitudes through a wider angular range. Over the course of a biaxial test, cyclic creep narrowly limited the angles and magnitudes of the principal strains. This limitation was not observed in the calculated principal stress behavior. Simple life predictions made on the measured strain gage histories were non-conservative in most cases.
Technical Paper

The Aerodynamic Development of the 1986 European Ford Transit

THIS PAPER GIVES an overview of the aerodynamic development of a medium commercial vehicle. It deals with the setting out and achievement of the objectives of reducing aerodynamic drag as well as other aspects of aerodynamic design development such as engine cooling, heating and ventilating and sensitivity to side winds. Reference is made to measures taken to develop heater intake designs which are suitable for a low resistance vehicle with a fast attached flow over most of the forward surfaces. At the time of initial design studies, the Ford of Europe windtunnel in Cologne, West Germany, had not yet been commissioned and it was necessary therefore to adapt testing methods to suite the different windtunnels which were used at various stages of the development programme.
Technical Paper

Biomechanical Design Considerations for Side Impact

Side impact collisions account for about 29% of all vehicle occupant fatalities and for about one-fifth of all the “harm” to vehicle occupants. This paper addresses many aspects of side impact induced injuries which vehicle planners and designers may choose to consider during the evolution of a vehicle design. The proposed NHTSA side impact test, side impact dummies, the biomechanics of different human body areas and general concepts for increased occupant protection are discussed from a theoretical point of view. It is believed that this paper or a future update of it, can only become a useful tool when there is general agreement that it reflects solid biomechanical direction which in turn, can be reflected in actual, practicable, responsible hardware design.
Technical Paper

Durability by Design - An Overview

An overview of the current status and emerging trends in durability-related technologies is presented as an introduction to a series of papers covering applications of durability analysis in design. Problems of information management associated with technology integration are discussed along with the probable impact of new design tools on product development and validation.
Technical Paper

Quantification of Inputs for Vehicle System Analysis

General methods are discussed for organization and quantification of input conditions for vehicle system analysis. The input considerations are discussed for vehicle ride comfort prediction and vehicle component fatigue life estimation problems. The paper presents an overview of current work in the areas of quantification of road surface inputs to vehicles and the representation of vehicle maneuver environments for use in vehicle system analysis.