Refine Your Search



Search Results

Technical Paper

A Vehicle Micro Corrosion Environmental Study of Field and Proving Ground Tests

This paper presents the progress of an ongoing vehicle micro corrosion environment study. The goal of the study is to develop an improved method for estimating vehicle corrosion based on the Total Vehicle Accelerated Corrosion Test at the Arizona Proving Ground (APG). Although the APG test greatly accelerates vehicle corrosion compared to the field, the “acceleration factor” varies considerably from site-to-site around the vehicle. This method accounts for the difference in corrosivity of various local corrosion environments from site-to-site at APG and in the field. Correlations of vehicle microenvironments with the macroenvironment (weather) and the occurrence of various environmental conditions at microenvironments are essential to the study. A comparison of results from APG versus field measurements generated using a cold rolled steel based corrosion sensor is presented.
Technical Paper

Bending Fatigue Behavior of Carburized Gear Steels: Four-Point Bend Test Development and Evaluation

The ability to evaluate the bending fatigue behavior of carburized low alloy steels in a laboratory and relate these measurements to performance of high contact ratio helical gears is important to the design and development of transmissions. Typical methods of evaluating bending fatigue performance of carburized gear steels do not directly represent helical planetary gears because they lack the geometric and loading conditions of planetary pinions. The purpose of this study is twofold; 1) development of a lab fatigue test to represent the fatigue performance of planetary pinion gears tested in a dynamometer and 2) evaluation of the influence of alloy content on bending fatigue performance of two steel alloys. The steels under evaluation were modified 8620M and 4615M alloys machined into bend bars with a notch representing a gear root and carburized to a case depth of approximately 0.35 mm (using the same carburizing cycle as the planetary pinion gears).
Technical Paper

Emissions from Diesel Vehicles with and without Lean NOx and Oxidation Catalysts and Particulate Traps

The regulated and non-regulated emissions of a current diesel passenger car and two light-duty diesel trucks with catalysts and particulate traps were measured to better understand the effects of aftertreatment devises on the environment. The passenger car, a 1.8 L IDI TC Sierra, was tested both with and without three different diesel oxidation catalysts (DOC) and with two fuel sulfur levels, 0 and 0.05 wt%. One light-duty truck, a 2.5 L DI NA Transit, was tested on one fuel, 0.05 wt% sulfur, with and without three different particulate trap/regeneration systems and with and without a urea lean NOx catalyst (LNC) system. A second similar Transit was tested on the 0.05 wt% sulfur fuel with an electrically regenerated trap system. The results are compared to each other, regulated emission standards, and to emissions from gasoline vehicles.
Technical Paper

Stress Durability Testing of Adhesively Bonded Steel

A stress durability test method that incorporates exposure to a corrosive environment has been used to evaluate the performance of adhesively bonded steel joints. For the systems examined, corrosion exposure is more damaging than exposure to humidity alone. The combination of load and corrosion exposure is substantially more severe than either alone. A method for analysis of the data and comparison of the test results for the evaluation of adhesive bond durability is proposed. The dependence of lifetime on load is defined as , where f is the ratio of applied load to initial, unexposed failure load. The exponent n provides a measure of the degree of acceleration of the interfacial degradation processes by load.
Technical Paper

The Effect of Stress Absorbing Layers on the Wear Behavior of Painted Plastic Substrates

Erosion damage to automotive car bodies caused by stones and small sand particles and road debris significantly affects the appearance of paint. Painted engineering plastics as well as precoated sheet steel are affected by erosion phenomenon. Erosion of painted plastic substrates results in cosmetic concerns while that on metal substrates results in cosmetic to perforation corrosion. This work describes a laboratory simulation of erosion of painted plastic substrates by small particles on various paint and substrate types. Gloss loss was used to quantitatively evaluate erosion of painted surfaces. Wear behavior of painted plastic substrates to slag sand impact was evaluated as a function of several variables including paint type (one-component melamine crosslinked (1K) vs. two-component isocyanate crosslinked (2K)), thermal history, and coating modulus. The effect of slag sand type (particle size and chemical composition) was studied.
Technical Paper

Thermal and Environmental Characterization of Composite Materials for Future Automotive Applications

Structural composite materials offer automotive engineers an excellent opportunity to produce automotive components that achieve weight savings, improved NVH (noise, vibration, and harshness) and inherent corrosion protection. Components designed and fabricated from automotive structural composite systems have demonstrated these capabilities during laboratory and in-service durability testing. Components evaluated to date have been employed in areas of the vehicle not likely to encounter high temperatures and with controlled exposure to harsh environments. More extensive use of structural composites will demand that future structural components be located in areas where they will likely encounter a wider range of temperature extremes as well as increased exposure to various environmental and automotive fluids.
Technical Paper

Friction and Wear Characteristics of Micro-Arc Oxidation Coating for Light Weight, Wear Resistant, Powertrain Component Application

An extremely tough alumina based ceramic coating produced by a modified anodizing process developed at Moscow Aviation Institute has been evaluated for light weight, wear resistant component applications in automotive powertrain. The process details and test results from comparative evaluation of friction and wear properties for cylinder bore application, referenced to cast iron baseline, are presented and discussed.
Technical Paper

Material Systems for Cylinder Bore Applications - Plasma Spray Technology

The development, evaluation, and selection of Plasma spray powder material for the coating of aluminum-alloy engine cylinder block bores was conducted to yield a bore system which provides numerous benefits relative to the present cast iron sleeve system. These include: a reduction in ring/bore wear, friction, and in engine oil consumption as well as a benefit in reduced corrosion. A reduction in engine weight, overall costs, and improvements in machining and honing operations are shown. Alternate thermal spray processes are also described in this investigation. Test evaluation leads to the selection of two plasma powder material spray systems. One system emphasizes low cost relative to the present system. The second system provides significant reduction in friction and ring/bore wear through the introduction of solid lubricant in the material composition.
Technical Paper

The Effect of Chemicals and Solvents on Plastics -An Engineering Practice Guide

The presence of a foreign substance on or within a polymer often affects the mechanical, chemical and thermal properties of the material. The change in strength and rigidity of a polymer resulting from the plasticizing action of a sorbed chemical or due to the withdrawal of an added plasticizer by the leaching operation can seriously affect the useful life of the material. In the real engineering world, incompatible chemicals and lubricants get onto various plastic components unexpectedly through design, manufacturing processes, customers services and repairs. This paper presents a number of case-studies which illustrate how undesirable chemicals found on plastic parts can affect product performance and cause damage to the parts.
Technical Paper

Estimation of the Switch Point of an Exhaust Gas Oxygen Sensor in General Exhaust Environments

A steady state model of the ZrO2 exhaust gas oxygen sensor response to a simple (O2,CO,H2,N2) gas mixture has shown that while the detailed shape of the curve for sensor emf output versus inverse redox ratio for the gas mixture depends on many parameters, the step from a relatively high emf to a lower emf that occurs at a critical gas composition can be located from conservation constraints on the individual atomic species. In this paper, these conservation constraints are generalized; a Rule of Mixtures is developed that relates the inverse redox ratio of the gas at the ZrO2 sensor switch point (Rs′) to a weighted average of the corresponding switch points for individual oxygen /gas-component mixtures (Rsjo′): where j denotes a specific reductant species, zj is the stoichiometric factor of the j species for complete oxidation, pj∞ is the partial pressure of gas species j in the mixture, and Δ is a well defined property of the O2 and NO oxidizing gases and the sensor electrodes.
Technical Paper

Effect of Engine Operating Parameters on Hydrocarbon Oxidation in the Exhaust Port and Runner of a Spark-Ignited Engine

The effect of engine operating parameters (speed, spark timing, and fuel-air equivalence ratio [Φ]) on hydrocarbon (HC) oxidation within the cylinder and exhaust system is examined using propane or isooctane fuel. Quench gas (CO2) is introduced at two locations in the exhaust system (exhaust valve or port exit) to stop the oxidation process. Increasing the speed from 1500 to 2500 RPM at MBT spark timing decreases the total, cylinder-exit HC emissions by ∼50% while oxidation in the exhaust system remains at 40% for both fuels. For propane fuel at 1500 rpm, increasing Φ from 0.9 (fuel lean) to 1.1 (fuel rich) reduces oxidation in the exhaust system from 42% to 26%; at 2500 RPM, exhaust system oxidation decreases from 40% to approximately 0% for Φ = 0.9 and 1.1, respectively. Retarded spark increases oxidation in the cylinder and exhaust system for both fuels. Decreases in total HC emissions are accompanied by increased olefinic content and atmospheric reactivity.
Technical Paper

Base Oil Effects on Friction Reducing Capabilities of Molybdenum Dialkyldithiocarbamate Containing Engine Oils

Engine oils formulated using molybdenum dialkyldithiocarbamate, Mo(dtc)2, additives can provide substantial friction reduction under mixed to boundary lubrication conditions. It has been previously shown that the effectiveness of Mo(dtc)2 is significantly affected by the presence of other additives and by additive interaction and depletion processes occurring during use. In this study, ligand exchange reactions in an additive system containing Mo(dtc)2 and zinc dialkyldithiophosphate, Zn(dtp)2, have been investigated during oxidation in hexadecane and various base oils at 160°C. Samples of different composition obtained from these studies were used in investigations of the effects of original additives and ligand exchange products on friction reducing capability at 45 and 105°C.
Technical Paper

Laboratory Screening of Diesel Oxidation Catalysts and Validation with Vehicle Testing: The Importance of Hydrocarbon Storage

A laboratory flow reactor test has been developed to examine hydrocarbon (HC) storage for diesel catalysts. Light-off testing alone has not been sufficient to rank diesel oxidation catalysts (DOCs) in agreement with vehicle HC conversions over the European driving cycle. HC emissions are important because of Stage II combined HC+NOx standard. During cold start and much of the ECE driving cycle, inlet catalyst temperatures on diesel passenger cars spend much time below 200°C. This is where more than half of the HC mass can be emitted. To be effective, DOCs must achieve sufficiently low HC light-off temperatures, or incorporate materials such as zeolites that trap HC until light-off is achieved. Consideration of both HC storage and light-off results together improve ranking of DOCs similar to vehicle ranking. Three supplier DOCs have been evaluated.
Technical Paper

Field Corrosion Performance of Magnesium Powertrain Components in Light Truck

Field inspection of 41 vehicles equipped with magnesium clutch housings or transfer cases was carried out after service in Nova Scotia or Prince Edward Island for periods up to five years. This area is reported to be the most severe location in North America for salt-induced corrosion of automobiles. The die cast magnesium components were unpainted, but basic measures were taken to control galvanic corrosion. The clutch housings had the longest history, with production spanning the years 1982-1987. The general surface corrosion of these housings was negligible, notably less than that of die cast aluminum 380 or carbon steel components on the same vehicle. Slight galvanic corrosion of exposed bolt bosses was observed, induced by the plated bolt. Some galvanic action was noted at the face-to-face junction between the magnesium clutch housings and aluminum 380 transmission cases. This was not sufficiently advanced to indicate a threat to component function.
Technical Paper

Perforation Corrosion Evaluation of Precoated Steels by Ford APG Cyclic Test

Proving Ground cyclic testing was used to evaluate vehicles assembled with electrogalvanized and organic composite coated electrogalvanized steel. These same materials, along with several commonly available precoated steels, were also evaluated as hem flange assemblies on towed trailers at the Proving Ground. Testing was terminated as perforation of some of the assemblies occurred. Pitting depth was used to quantitatively evaluate metal loss.
Technical Paper

Wear Protection Properties of Flexible Fuel Vehicle (FFV) Lubricants

A laboratory wear test is used to evaluate the wear protection properties of new and used engine oils formulated for FFV service. Laboratory-blended mixtures of these oils with methanol and water have also been tested. The test consists of a steel ball rotating against three polished cast iron discs. Oil samples are obtained at periodic intervals from a fleet of 3.0L Taurus vehicles operating under controlled go-stop conditions. To account for the effects of fuel dilution, some oils are tested before and after a stripping procedure to eliminate gasoline, methanol and other volatile components. In addition to TAN and TBN measurements, a capillary electrophoresis technique is used to evaluate the formate content in the oils. The results suggest that wear properties of used FFV lubricants change significantly with their degree of usage.
Technical Paper

U.S. Automotive Corrosion Trends at 5 & 6 Years

In 1985, the Body Division of the Automotive Corrosion and Prevention Committee of SAE (ACAP) concluded that an automotive body corrosion survey for public consumption was needed. The committee proceeded to develop a survey methodology and conducted surveys in the Detroit area every second year starting in 1985. The survey is a closed car parking lot survey of nineteen panels or partial panels checking for perforations, blisters and surface rust. Similar surveys have and will continue to be conducted at biyearly intervals for comparison purposes to track the results of industry wide corrosion protection “improvements”. This is a report of the results of the first three surveys. THE ACAP COMMITTEE BODY DIVISION has now completed the third in its series of biyearly surveys. It is now possible to see some very clear results of industry actions and some indication of future performance.
Technical Paper

The Ford Aluminum Beaker Test: A New Tool for the Study of ATF Oxidation

A small-scale oxidation test for automatic transmission fluids has been developed. In the test air flow rates, temperature and catalytic activity can be closely controlled at desired levels. A test procedure for screening automatic transmission fluids is described. Data are presented illustrating the ability of the test to distinguish between different levels of oxidation resistance, the repeatability of the test, and the correlation achieved thus far with a presently used full-scale transmission oxidation test.
Technical Paper

A Rapid Method to Predict the Effectiveness of Inhibited Engine Coolants in Aluminum Heat Exchangers

The galvanostatic polarization method was used to determine the pitting potentials of candidate wrought aluminum alloys in inhibited ethylene glycol engine coolants. It was shown that the relative value of the pitting potential is an excellent measure of the long-term effectiveness of the coolants in preventing spontaneous pitting and crevice attack in the aluminum heat exchangers. The long-term effectiveness was determined by metallographic examination of aluminum heat exchangers subjected to a four-month, 50,000 mile simulated service circulation test.
Technical Paper

Corrosion of Cast Aluminum Alloys under Heat-Transfer Conditions

Most coolant formulations designed for cast iron engines are unsatisfactory for aluminum head/block use because of excessive heat-transfer corrosion, resulting in heavy corrosion product deposition and loss of cooling efficiency in the radiator. The effect of inhibitor and buffer additives, singly and in combination, on the heat-transfer corrosion rates for cast aluminum alloys was investigated. It was shown that some tetraborate and phosphate mixtures can be excessively corrosive. Silicate, in contrast, effectively protects the heat-transfer surfaces. In addition, the effects of heat-transfer surface temperature, nucleate boiling, and variations in glycol, dissolved oxygen and chloride concentrations on the heat-transfer corrosion rate were investigated.