Refine Your Search



Search Results

Technical Paper

Development and Validation of a Computational Process for Pass-By Noise Simulation

The Indirect Boundary Element Analysis is employed for developing a computational pass-by noise simulation capability. An inverse analysis algorithm is developed in order to generate the definition of the main noise sources in the numerical model. The individual source models are combined for developing a system model for pass-by noise simulation. The developed numerical techniques are validated through comparison between numerical results and test data for component level and system level analyses. Specifically, the source definition capability is validated by comparing the actual and the computationally reconstructed acoustic field for an engine intake manifold. The overall pass-by noise simulation capability is validated by computing the maximum overall sound pressure level for a vehicle under two separate driving conditions.
Technical Paper

Eliminating Piston Slap through a Design for Robustness CAE Approach

Piston slap is a problem that plagues many engines. One of the most difficult aspects of designing to eliminate piston slap is that slight differences in operating conditions and in part geometries from build to build can create large differences in the magnitude of piston slap. In this paper we will describe a design for robustness CAE approach to eliminating piston slap. This approach considers the variations of the significant control factors in the design, e.g. piston pin offset, piston skirt design, etc. as well as the variation in the noise factors the system is subjected to, e.g. assembly clearance, skirt collapse, peak cylinder pressure, cylinder pressure rise rate, and location of peak cylinder pressure. Using analytical knowledge about how these various factors impact the generation of piston slap, a piston design for low levels of piston slap can be determined that is robust to the various noise factors.
Technical Paper

Spectrogram Analysis of Accelerometer-Based Spark Knock Detection Waveforms

Spark knock pressure oscillations can be detected by a cylinder pressure transducer or by an accelerometer mounted on the engine block. Accelerometer-based detection is lower cost but is affected by extraneous mechanical vibrations and the frequency response of the engine block and accelerometer. The knock oscillation frequency changes during the expansion stroke because the chamber geometry is changing due to the piston motion and the burned gases are cooling. Spectrogram analysis shows the time-dependent frequency content of the pressure and acceleration signals, revealing characteristic signatures of knock and mechanical vibrations. Illustrative spectrograms are presented which yield physical insight into accelerometer-based knock detection.
Technical Paper

Determination of Vehicle Interior Sound Power Contribution Using Sound Intensity Measurement

For vehicle interior noise abatement and noise treatment, it is desirable to quantitatively determine sound power contribution from each vehicle component because: (1) Sound packages can be designed with maximized efficiency if sound power contribution into a vehicle is known; (2) Acoustic leakage inside a vehicle can be determined by comparing sound power contributions from adjacent vehicle components; and (3) Sound power flow information can be used to verify Statistical Energy Analysis (SEA) model. Simple sound pressure measurement does not produce any information about sound power flow and is unsuitable for these purposes. This paper describes an in-situ determination of sound power contribution inside a vehicle using sound intensity measurements. Sound power contribution from each vehicle component was determined for engine noise at idle speed. Acoustic leakage in the vehicle was also determined.
Technical Paper

A Predictive Model for the Interior Pressure Oscillations from Flow Over Vehicle Openings

An analytical model based on “vortex sound” theory was investigated for predicting the frequency, the relative magnitude, the onset, and the offset of self-sustained interior pressure fluctuations inside a vehicle with an open sunroof. The “buffeting” phenomenon was found to be caused by the flow-excited resonance of the cavity. The model was applied to investigate the optimal sunroof length and width for a mid-size sedan. The input parameters are the cavity volume, the orifice dimensions, the flow velocity, and one coefficient characterizing vortex diffusion. The analytical predictions were compared with experimental results obtained for a system which geometry approximated the one-fifth scale model of a typical vehicle passenger compartment with a rectangular, open sunroof. Predicted and observed frequencies and relative interior pressure levels were in good agreement around the “critical” velocity, at which the cavity response is near resonance.
Technical Paper

Study of Vapor Generation from Fuel System Components

Evaporative emissions from automotive fuel systems have been recognized as one contributor to photochemical smog and ozone pollution, and so are subject to increasingly stringent regulation. An attractive strategy is to limit the amount of fuel vapor generated in the fuel system, thus easing the burden on the vehicle systems needed to store and eliminate vapor. High fuel tank temperature is a major contributor to vapor generation. Many efforts to reduce the temperature inside a fuel tank have been attempted such as mechanical or electrical returnless fuel systems. Even though these systems reduce vapor generation by about 80% compared to conventional return systems, further improvements may be possible. One way to identify possible improvements is to separately examine the vapor generation of fuel system components, such as fuel pumps, pressure regulators, and jet pumps. Most of these components have an orifice or a narrow flow path which generates low pressure.
Technical Paper

Relating Subjective Idle Quality to Engine Combustion

Engine designers need an objective measurement which can be tested on the engine to indicate acceptable idle quality. An experiment was performed to select objective measures based on cylinder pressure data, and two measures were selected. Standard deviation of indicated mean effective pressure (SDimep) is a measure of the statistical instability of combustion. Lowest normalized value (LNV) is a measure of the tendency toward misfire. These two measures are shown for a set of typical engines. The body of data shows the relation of SDimep and LNV to burn duration and timing.
Technical Paper

The Effect of Vehicle Exhaust System Components on Flow Losses and Noise in Firing Spark-Ignition Engines

Sound attenuation and flow loss reduction are often two competing demands in vehicle breathing systems. The present study considers a full vehicle exhaust system and investigates both the sound attenuation and the flow performance of production configurations including the catalyst, the resonator, and the muffler. Dynamometer experiments have been conducted with a firing Ford 3.0L, V-6 engine at wide-open throttle with speeds ranging from 1000 to 5000 rpm. Measurements including the flow rates, the temperatures and the absolute dynamic pressures of the hot exhaust gases at key locations (upstream and downstream of every component) with fast-response, water-cooled piezo-resistive pressure transducers facilitate the calculation of acoustic performance of each component, as well as the determination of flow losses caused by these elements and their influence on the engine performance.
Technical Paper

An Analytical Method for Determining Engine Torque Harmonics for Use With Up Front CAE

An analytical method for determining engine torque harmonics is presented. The approach employs an engine cycle simulation model to calculate instantaneous cylinder pressure for each operating condition based on engine characteristics that can be determined experimentally and/or analytically. Cylinder pressure is converted to instantaneous torque from which harmonics are determined using an FFT algorithm. A description of the cycle simulation model, including required data, is presented. The method is validated by presenting correlation results at a number of operating conditions (i.e. engine speeds and loads) comparing analytical versus test driveline torque harmonics. Finally, limitations in the method as well as possible extensions to the method are discussed.
Technical Paper

Compound Electroformed Metal Nozzles for High Pressure Gasoline Injection

The objective of this research was to evaluate the effects that higher fluid injection pressures and nozzle geometry have on compound fuel injector nozzle performance. Higher pressures are shown to significantly reduce droplet size, increase the discharge coefficient and reduce the overall size of a nozzle spray. It is also shown that the geometry has a significant effect on nozzle performance, and it can be manipulated to give a desired spray shape.
Technical Paper

Direct Estimation of Cyclic Combustion Pressure Variability Using Engine Speed Fluctuations in an Internal Combustion Engine

Cyclic variability (CV) in combustion in IC-SI engines, manifested as variation in combustion pressure, is a long term as well as a contemporary problem. CV and its relation to several areas of engine control and diagnostics are discussed. A novel stochastic model relating combustion pressure to crankshaft velocity in an IC-SI engine is presented. This model incorporates a random combustion pressure signal model composed of a deterministic waveform and a random sequence modeling cyclic variation in combustion pressure. A discrete recursion is developed relating this sequence to noisy measurements of velocity. The inverse problem of reconstructing this sequence from one measurement of velocity per combustion is solved using a signal processing deconvolution method. Experimental results using real-world engine data are presented verifying the theoretical developments for low to moderate engine speed and moderate engine load.
Technical Paper

Time-Resolved Measurement of Speciated Hydrocarbon Emissions During Cold Start of a Spark-Ignited Engine

Speciated HC emissions from the exhaust system of a production engine without an active catalyst have been obtained with 3 sec time resolution during a 70°F cold start using two control strategies. For the conventional cold start, the emissions were initially enriched in light fuel alkanes and depleted in heavy aromatic species. The light alkanes fell rapidly while the lower vapor pressure aromatics increased over a period of 50 sec. These results indicate early retention of low vapor pressure fuel components in the intake manifold and exhaust system. Loss of higher molecular weight HC species does occur in the exhaust system as shown by experiments in which the exhaust system was preheated to 100° C. The atmospheric reactivity of the exhaust HC emissions for photochemical smog formation increases as the engine warms.
Technical Paper

Vapor Pressure Equations for Characterizing Automotive Fuel Behavior Under Hot Fuel Handling Conditions

A simple set of equations has been developed to characterize automotive fuel behavior in fuel tanks, fuel vapor systems and fuel rails, particularly under hot weather conditions. The system of equations links the vapor pressure P, the temperature T, and the mass fraction evaporated Z. Parameters are determined empirically from laboratory vapor pressure and distillation tests. With appropriate values for heat capacity, heat of vaporization, and vapor composition, the equations can be used to estimate upper flammability limits, fuel weathering under hot fuel handling conditions, pressure rise in tanks, and evaporative vapor generation. The equations were developed as part of a larger fuel vapor system model.
Technical Paper

Effect of Tailpipe Tip Orientation on Backpressure

A straight cut tailpipe tip was empirically evaluated for the effect that the tip's orientation to a cross-wind had on the ability to reduce exhaust system backpressures associated with the purging of the combustion products. The straight across tip was attached to a vehicle at various angles of inclination to their axes while exhaust back pressure and performance readings were recorded. Testing indicated that there is a preferred orientation to reduce backpressure. Attempts to match on-vehicle data with wind tunnel data were met with partial success.
Technical Paper

Vibrational Sensor Based on Fluid Damping Mechanisms

A piezoelectrically driven vibrating cantilever blade is damped by a number of mechanisms including viscous damping in a still fluid and aerodynamic damping in a flow. By measuring the damping of devices operating at resonance in the 1 to 5 kHz region, one can measure such properties as mass flow, absolute pressure or the product of molecualar mass and viscosity. In the case of the mass flow measurement, the device offers a mechanical alternative to hotwire and hot film devices for the automotive application.
Technical Paper

Compensation for Road Noise in Automotive Entertainment Systems

Vehicle operation noise, even in the quietest cars, produces high sound pressure levels (SPL) at very low frequencies. This noise masks desired signals in and above this frequency range. A blind subjective test, using ten listeners, was undertaken to determine a frequency response equalization curve that would compensate for this noise under specific but realistic conditions. Starting with a 4 dB full-band level increase, an average of 40 listener responses showed a gentle rise in bass reaching an additional 4 dB at 50 Hz.
Technical Paper

V/L Effect on Vapor Pressure Measurement of Full Boiling Range Fuels Using the Two-Part Injection Method

The internally programmed two-injection method for determining the dissolved air correction in the CCA-VP laboratory vapor pressure instrument (Grabner Instruments), while adequate for pure, single component liquids, can be in error for full boiling range automotive fuels. For these fuels, errors of up to 10 kPa (1.5 psi) in vapor pressure at 38°C (100°F) can occur due to the increase in vapor pressure between the first and second injection caused by decreasing vapor liquid ratio (V/L); this increase is interpreted by the instrument as additional dissolved air and results in overcorrection for this effect. A method is demonstrated for removing the V/L effect using two TV/L values for the subject fuel, either calculated or measured independently. The true air correction determined in this way is similar to values obtained for single component fuels and to values calculated directly from air solubility data.
Technical Paper

Titania Exhaust Gas Sensor for Automotive Applications

The change in the resistance of titanium dioxide with oxygen partial pressure is utilized to obtain an air-to-fuel ratio sensor. TiO2 material properties, sensor components and performance characteristics are discussed. Some results of engine dynamometer and vehicle tests of sensor performance and durability are presented.
Technical Paper

On-Board Diagnostics of Fuel Injector Clogging

A pressure transducer, closely mounted to the fuel rail pressure regulator of a production fuel system, captured transient waveforms in a bench experiment. Signals were processed to detect the reduction of fuel flow caused by injector clogging. Interference among wave patterns and the proximate action of the pressure regulator made quantitative correlation difficult. However, changes in wave amplitudes can be qualitative indicators of injector clogging problems. A modification was made that moved the regulator nearer the fuel pump outlet and deadheaded the rail. With these modifications, sequential transient pulses from a single operating injector showed good correlation between the pressure drop in the fuel rail during injection and the injector static fuel flow rate. To apply this behavior to multi-cylinder engine analysis, a waveform superposition method was developed to extract single injector information during multi-injector operation.
Technical Paper

Modeling Diffuser-Monolith Flows and Its Implications to Automotive Catalytic Converter Design

Most current automotive catalytic converters use diffusers to distribute the flow field inside the monolithic bricks where catalysis takes place. While the characteristics and performance of a simple diffuser flow are well documented, the influence of downstream brick resistance is not clear. In this paper the trade-off between flow-uniformity and pressure drop of an axisymmetric automotive catalytic converters is studied numerically. The monolithic brick resistance is formulated from the pressure gradient of fully developed laminar duct-flow and corrected for the entrance effect. A distribution index was formulated to quantify the degree of non-uniformity in selected test cases. The test matrix covers a range of different diffuser angles and flow resistances (brick types). For simplicity, an axisymmetric geometry is chosen. Flow distribution within the monolith was found to depend strongly on diffuser performance, which is modified by brick resistance.