Refine Your Search

Topic

Author

Search Results

Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Journal Article

Cosmetic Corrosion Test for Aluminum Autobody Panels: Final Report

2010-04-12
2010-01-0726
Over the past several years a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has conducted extensive on-vehicle field testing and numerous accelerated lab tests with the goal of establishing a standard accelerated test method for cosmetic corrosion evaluations of finished aluminum auto body panels. This project has been a cooperative effort with OEM, supplier, and consultant participation and was also supported in part by DOE through USAMP (AMD 309). The focus of this project has been the identification of a standardized accelerated cosmetic corrosion test that exhibits the same appearance, severity, and type of corrosion products that are exhibited on identical painted aluminum panels exposed to service relevant environments. Multi-year service relevant exposures were conducted by mounting panels on-vehicles in multiple locations in the US and Canada.
Technical Paper

Base Oil Effects on Friction Reducing Capabilities of Molybdenum Dialkyldithiocarbamate Containing Engine Oils

1997-10-01
972860
Engine oils formulated using molybdenum dialkyldithiocarbamate, Mo(dtc)2, additives can provide substantial friction reduction under mixed to boundary lubrication conditions. It has been previously shown that the effectiveness of Mo(dtc)2 is significantly affected by the presence of other additives and by additive interaction and depletion processes occurring during use. In this study, ligand exchange reactions in an additive system containing Mo(dtc)2 and zinc dialkyldithiophosphate, Zn(dtp)2, have been investigated during oxidation in hexadecane and various base oils at 160°C. Samples of different composition obtained from these studies were used in investigations of the effects of original additives and ligand exchange products on friction reducing capability at 45 and 105°C.
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2007-04-16
2007-01-0417
Since 2000, an Aluminum Cosmetic Corrosion task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has existed. The task group has pursued the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. A cooperative program uniting OEM, supplier, and consultants has been created and has been supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Prior to this committee's formation, numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels. However, correlations between these laboratory test results and in-service performance have not been established. Thus, the primary objective of this task group's project was to identify an accelerated laboratory test method that correlates well with in-service performance.
Technical Paper

Examination of the Corrosion Behavior of Creep-Resistant Magnesium Alloys in an Aqueous Environment

2007-04-16
2007-01-1023
An electrochemical testing protocol for assessing the intrinsic corrosion-resistance of creep-resistant magnesium alloys in aqueous environments, and effects of passivating surface films anticipated to develop in the presence of engine coolants is under development. This work reports progress in assessing the relative corrosion resistance of the base metals (AMC-SC1, MRI-202S, MRI-230D, AM50 and 99.98% Mg) in a common test environment, based on a near-neutral pH buffered saline solution, found to yield particularly stable values for the open-circuit or corrosion potential. This approach was found to provide a platform for the eventual assessment of the durability of certain passivating layers expected to develop during exposure of the magnesium alloys to aqueous coolants.
Technical Paper

Deactivation of Cu/Zeolite SCR Catalyst under Lean-Rich Aging Conditions

2010-04-12
2010-01-1180
A lean-rich hydrothermal aging was used to study the deactivation of Cu-zeolite SCR catalyst that has enhanced stability. Impact of DOC upstream on the SCR catalyst during the lean-rich aging was also investigated. The LR hydrothermal aging was conducted with the presence of hydrocarbon, CO and H₂ at different O₂ levels. It was found that the SCR catalyst was active for the oxidation of CO, H₂ and hydrocarbon, resulting in significant exotherm across the catalyst. In addition to hydrothermal aging, reductive aging, especially the presence of H₂ in the aging gas stream without O₂ presence during the L-R aging, might also contribute to the Cu/zeolite SCR catalyst deactivation. The impacts of DOC upstream on Cu/zeolite SCR catalysts depended on the aging temperatures. At lower aging temperature, the uncompleted oxidation of hydrocarbon and CO on the DOC might cause steam reforming and water-gas shift reactions on the DOC to form reductive gas stream.
Technical Paper

A Vehicle Micro Corrosion Environmental Study of Field and Proving Ground Tests

2001-03-05
2001-01-0646
This paper presents the progress of an ongoing vehicle micro corrosion environment study. The goal of the study is to develop an improved method for estimating vehicle corrosion based on the Total Vehicle Accelerated Corrosion Test at the Arizona Proving Ground (APG). Although the APG test greatly accelerates vehicle corrosion compared to the field, the “acceleration factor” varies considerably from site-to-site around the vehicle. This method accounts for the difference in corrosivity of various local corrosion environments from site-to-site at APG and in the field. Correlations of vehicle microenvironments with the macroenvironment (weather) and the occurrence of various environmental conditions at microenvironments are essential to the study. A comparison of results from APG versus field measurements generated using a cold rolled steel based corrosion sensor is presented.
Technical Paper

Products and Intermediates in Plasma-Catalyst Treatment of Simulated Diesel Exhaust

2001-09-24
2001-01-3512
A simulated diesel exhaust is treated with a nonthermal plasma discharge under steady state conditions. The plasma effluent is then passed through a sodium zeolite-Y (NaY) catalyst followed by a platinum oxidation catalyst. Detailed FTIR measurements of gas composition are taken before, between, and after the treatment stages. The plasma discharge causes oxidation of NO primarily to NO2, with methyl nitrate and nitric acid byproducts. At the same time, HC is partially oxidized, creating species such as formaldehyde, acetaldehyde, CO and other partial oxidation products. When this mixture passes over the NaY catalyst, part of the NOx is reduced to N2, with the remainder primarily in the form of NO. Methyl nitrate decomposes to form methanol and NOx, and nitric acid is consumed. There is little HC conversion on this catalyst. Small quantities of HCN and N2O are formed. When the mixture then passes over the platinum catalyst, further NOx conversion occurs.
Technical Paper

Laboratory Assessment of the Oxidation and Wear Performance Capabilities of Low Phosphorus Engine Oils

2001-09-24
2001-01-3541
Meeting upcoming stringent emission standards will require that exhaust gas catalyst systems become active very quickly, function at very high efficiencies and maintain those capabilities at high mileages. This means that contamination of the catalysts by engine oil derived poisons must be minimized. Phosphorus compounds, derived from the zinc dialkyldithio-phosphate (ZDTP) additives that provide antiwear and antioxidant activity, are a principal contaminant that can increase catalyst light off times and reduce catalyst efficiency. Therefore, reducing the concentration of, or eliminating, phosphorus in engine oils is desirable. Doing so, however, requires that oils be reformulated to ensure that wear protection will not be compromised and that oxidation stability will be maintained. To address these concerns, laboratory tests for evaluating oil oxidation and wear performance have been developed and used to evaluate developmental low phosphorus oils.
Technical Paper

Alternatives to Electrocoating Aluminum in Automotive Applications

1992-02-01
920280
The inherent corrosion resistance of aluminum is much greater than automotive steels. To demonstrate this principle in a fashion acceptable to the automotive industry, a test program was run which incorporated lab, test track and real life trials on both unpainted and painted aluminum and painted steel. The lab program consisted of neutral salt and cyclic corrosion tests. Having demonstrated that aluminum does not need electrocoating for good corrosion integrity, alternatives to electrocoating which would allow primers to be applied only where necessary for esthetic purposes were sought. Several primers were selected for study based upon current automotive usage. Factors such as the degree of pretreatment prior to primer application and the presence of residual lubricant on the metal were evaluated.
Technical Paper

Restoring and Upgrading of a Ford Motor Company Reverberation Room Test Suite

2013-05-13
2013-01-1960
This paper presents the upgrades and improvements needed to bring an old and seldom used reverberation room test suite up to current standards. The upgrades and improvements included eliminating a below-floor pit that was open to the reverberation room, improving the acoustical diffusion within the room, enlarging the opening between the reverberation room and an adjacent anechoic chamber, renovating the anechoic receiving chamber, constructing an innovative sound transmission loss test fixture, and installing of a high power reverberation room sound system.
Technical Paper

Aluminum Wheel Alloy Variants: Effects on Corrosion Performance

1998-02-23
980461
Previous work has shown that variations in wheel alloy chemistry, particularly with respect to copper and iron levels, can have a pronounced effect on filiform corrosion performance. In this study, an examination of A356.2 alloy chemistry variants and their effects on corrosion was carried out in greater detail. The emphasis was on copper and iron variants, both alone and in combination. Copper levels ranged from 0.005 to 0.22% and iron from 0.04 to 0.23%. The effect of manganese additions was also examined, with levels ranging from 0.002 to 0.07%. In addition to the alloying variants, the level of dispersed oxides in the castings was varied to determine any effects on corrosion performance. Although filiform corrosion performance of painted samples was the primary focus of this study, the corrosion behaviour of unpainted samples was also evaluated for comparison purposes.
Technical Paper

Perforation Corrosion Evaluation of Precoated Steels by Ford APG Cyclic Test

1993-10-01
932364
Proving Ground cyclic testing was used to evaluate vehicles assembled with electrogalvanized and organic composite coated electrogalvanized steel. These same materials, along with several commonly available precoated steels, were also evaluated as hem flange assemblies on towed trailers at the Proving Ground. Testing was terminated as perforation of some of the assemblies occurred. Pitting depth was used to quantitatively evaluate metal loss.
Technical Paper

Effects of Surface Texture on the Appearance and Corrosion of Painted Aluminum Body Sheet

1993-03-01
930702
Studies have indicated that enhanced corrosion resistance and appearance after painting can be obtained on automotive steels by texturing the sheet surface. To determine whether these same improvements could be obtained on aluminum, paint performance and appearance were evaluated on heat treatable alloys that had been given shot dulled and laser textured finishes. Corrosion performance was measured by filiform and SCAB tests and paint appearance by distinctness of image (DOI). Profilometry was used to characterize the roughness of the sheet surface at various stages of paint application. Experiments demonstrated that corrosion performance was not significantly affected by surface texture. However, the DOI of painted textured surfaces varied with the extent of reduction of the sheet when rolled and, in particular, with the paint system. Mill finish aluminum was shown to have DOI equivalent to that achieved on cold rolled or electrogalvanized steels.
Technical Paper

Wear Protection Properties of Flexible Fuel Vehicle (FFV) Lubricants

1993-10-01
932791
A laboratory wear test is used to evaluate the wear protection properties of new and used engine oils formulated for FFV service. Laboratory-blended mixtures of these oils with methanol and water have also been tested. The test consists of a steel ball rotating against three polished cast iron discs. Oil samples are obtained at periodic intervals from a fleet of 3.0L Taurus vehicles operating under controlled go-stop conditions. To account for the effects of fuel dilution, some oils are tested before and after a stripping procedure to eliminate gasoline, methanol and other volatile components. In addition to TAN and TBN measurements, a capillary electrophoresis technique is used to evaluate the formate content in the oils. The results suggest that wear properties of used FFV lubricants change significantly with their degree of usage.
Technical Paper

Development of an Understanding of the Critical Factors Influencing Waterside Corrosion Behaviour of Brazed Aluminium Radiators

1994-03-01
940499
The application of aluminium alloy materials for automotive heat exchangers, including engine cooling and air conditioning systems, is now widespread. To meet the industry demands of both extended service life and improved reliability for heat exchanger components, it is important that the critical factors influencing corrosion behaviour are properly understood, particularly with the trend towards downgauging of materials. To maximise resistance to waterside corrosion, manufacturers have adopted the approach of using an internal cladding, commonly a high purity or zinc - containing alloy, to provide sacrificial protection of the core material. Recent studies have shown that the presence of an internal cladding can, under certain conditions, promote rapid localised attack of the core alloy.
Technical Paper

Effect of Engine Operating Parameters on Hydrocarbon Oxidation in the Exhaust Port and Runner of a Spark-Ignited Engine

1995-02-01
950159
The effect of engine operating parameters (speed, spark timing, and fuel-air equivalence ratio [Φ]) on hydrocarbon (HC) oxidation within the cylinder and exhaust system is examined using propane or isooctane fuel. Quench gas (CO2) is introduced at two locations in the exhaust system (exhaust valve or port exit) to stop the oxidation process. Increasing the speed from 1500 to 2500 RPM at MBT spark timing decreases the total, cylinder-exit HC emissions by ∼50% while oxidation in the exhaust system remains at 40% for both fuels. For propane fuel at 1500 rpm, increasing Φ from 0.9 (fuel lean) to 1.1 (fuel rich) reduces oxidation in the exhaust system from 42% to 26%; at 2500 RPM, exhaust system oxidation decreases from 40% to approximately 0% for Φ = 0.9 and 1.1, respectively. Retarded spark increases oxidation in the cylinder and exhaust system for both fuels. Decreases in total HC emissions are accompanied by increased olefinic content and atmospheric reactivity.
Technical Paper

U.S. Automotive Corrosion Trends Over the Past Decade

1995-02-01
950375
Since 1985, the Body Division of the Automotive Corrosion and Prevention Committee of SAE (ACAP) has conducted biannual surveys of automotive body corrosion in the Detroit area. The purpose of these surveys is to track industry wide corrosion protection improvements and to make this information available for public consumption. The survey consists of a closed car parking lot survey checking for perforations, blisters, and surface rust. This paper reports the results of the five surveys conducted to date.
Technical Paper

Emissions from Diesel Vehicles with and without Lean NOx and Oxidation Catalysts and Particulate Traps

1995-10-01
952391
The regulated and non-regulated emissions of a current diesel passenger car and two light-duty diesel trucks with catalysts and particulate traps were measured to better understand the effects of aftertreatment devises on the environment. The passenger car, a 1.8 L IDI TC Sierra, was tested both with and without three different diesel oxidation catalysts (DOC) and with two fuel sulfur levels, 0 and 0.05 wt%. One light-duty truck, a 2.5 L DI NA Transit, was tested on one fuel, 0.05 wt% sulfur, with and without three different particulate trap/regeneration systems and with and without a urea lean NOx catalyst (LNC) system. A second similar Transit was tested on the 0.05 wt% sulfur fuel with an electrically regenerated trap system. The results are compared to each other, regulated emission standards, and to emissions from gasoline vehicles.
Technical Paper

The Effect of Chemicals and Solvents on Plastics -An Engineering Practice Guide

1995-02-01
950634
The presence of a foreign substance on or within a polymer often affects the mechanical, chemical and thermal properties of the material. The change in strength and rigidity of a polymer resulting from the plasticizing action of a sorbed chemical or due to the withdrawal of an added plasticizer by the leaching operation can seriously affect the useful life of the material. In the real engineering world, incompatible chemicals and lubricants get onto various plastic components unexpectedly through design, manufacturing processes, customers services and repairs. This paper presents a number of case-studies which illustrate how undesirable chemicals found on plastic parts can affect product performance and cause damage to the parts.
X