Refine Your Search



Search Results


Monitoring Urea Quantity Delivery for Diesel SCR After-treatment

While providing significant benefits to vehicle operation and emissions, on board diagnosis comes at a cost. In many cases the additional cost comes in the form of reduced optimal performance. Often the additional cost can be mitigated by considering the OBD requirements early in the development stages. In this presentation we show these trade-offs in a number of case studies. We will point out where the ability to diagnose comes at the cost of suboptimal performance, and where system design decisions can facilate the OBD task. Presenter Michiel Van Nieuwstadt, Ford Motor Co.
Technical Paper

Suppression of Sulfide Emission During Lean Nox Trap Desulfation

Lean NOx traps are being extensively examined (Ref. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12) because they can be efficiently used to reduce the NOx emissions from port fuel injected and direct fuel injected spark ignited gasoline engines. A lean NOx trap (LNT) stores NOx during lean A/F engine operation. However, its storage capacity is limited and the LNT must be regenerated periodically by subjecting the LNT to momentary rich A/F operation for several seconds. The regeneration process releases the NOx that is chemically bonded to the washcoat and subsequently reduces it to N2 and O2. Fuel that contains a non-zero amount of sulfur will contaminate an LNT by significantly reducing its NOx storage capacity. Therefore, except for the case of a zero level of sulfur in the fuel, the LNT must be desulfated on a periodic basis. The desulfation process requires that the temperature of the LNT be raised to a temperature of about 650°C for several minutes.
Technical Paper

A Comparison of the Emissions from a Vehicle in Both Normal and Selected Malfunctioning Operation Modes

A 1990 Ford Taurus operated on reformulated gasoline was tested under three modes of malfunction: disabled heated exhaust gas oxygen (HEGO) sensor, inactive catalytic converter, and controlled misfire. The vehicle was run for four U.S. EPA UDDS driving schedule (FTP-75) tests at each of the malfunction conditions, as well as under normal operating conditions. An extensive set of emissions data were collected. In addition to the regulated emissions (HC, CO, and NOx), a detailed chemical analysis was carried out to determine the gas- and particle-phase non-regulated emissions. The effect of vehicle malfunction on gas phase emissions was significantly greater than it was on particle phase emissions. For example, CO emissions ranged from 2.57 g/mi (normal operation) to 34.77 g/mi (disable HEGO). Total HCs varied from 0.22 g/mi (normal operation) to 2.21 g/mi (blank catalyst). Emissions of air toxics (1,3-butadiene, benzene, acetaldehyde, and formaldehyde) were also significantly effected.
Technical Paper

Exhaust Valve Seat Leakage

A 1.9L four cylinder engine was evaluated for leakage of cylinder charge through the exhaust valve seats. Fast FID HC analyzer traces reveal leakage. Static leakdown tests do not correlate with the Fast FID measurement, unlike previously published reports for a different engine. The causes of exhaust valve seat leakage are likely to be Flakes of cylinder deposits lodging in the valve seat Valve seat distortion due to the thermal and pressure loading of the cylinder head structure Because deposit related effects are very history dependent, it is very difficult to obtain quantitative results. Some experimental observations: Static pressure leakage measurements show variation of leakage area with cylinder pressure, caused by flexing of the valve head. Dynamic leakage results are history dependent. Leakage is reduced after running at high speed/load, and gradually build up during extended light load low speed operation.
Technical Paper

Wave Propagation in Catalytic Converters: A Preliminary Investigation

The present study investigates the wave propagation and attenuation in catalytic converters. The relationships for wave propagation in a catalytic monolith are derived first and then coupled to the wave propagation in tapered ducts. Analytical predictions are compared with experimental results to validate the theory.
Technical Paper

Investigation of the Dilution Process for Measurement of Particulate Matter from Spark-Ignition Engines

Measurements of particulate matter (PM) from spark ignition (SI) engine exhaust using dilution tunnels will become more prevalent as emission standards are tightened. Hence, a study of the dilution process was undertaken in order to understand how various dilution related parameters affect the accuracy with which PM sizes and concentrations can be determined. A SI and a compression ignition (CI) engine were separately used to examine parameters of the dilution process; the present work discusses the results in the context of SI exhaust dilution. A Scanning Mobility Particle Sizer (SMPS) was used to measure the size distribution, number density, and volume fraction of PM. Temperature measurements in the exhaust pipe and dilution tunnel reveal the degree of mixing between exhaust and dilution air, the effect of flowrate on heat transfer from undiluted and diluted exhaust to the environment, and the minimum permissible dilution ratio for a maximum sample temperature of 52°C.
Technical Paper

Calculating the Rate of Exothermic Energy Release for Catalytic Converter Efficiency Monitoring

This paper reports on the development of a new methodology for OBD-II catalyst efficiency monitoring. Temperature measurements taken from the center of the catalyst substrate or near the exterior surface of the catalyst brick were used in conjunction with macroscopic energy balances to calculate the instantaneous rate of exothermic energy generation within the catalyst. The total calculated rate of exothermic energy release over the FTP test cycle was within 10% of the actual or theoretical value and provided a good indicator of catalyst light-off for a variety of aged catalytic converters. Normalization of the rate of exothermic energy release in the front section of the converter by the mass flow rate of air inducted through the engine was found to provide a simple yet practical means of monitoring the converter under both FTP and varying types of road driving.
Technical Paper

Emissions from Diesel Vehicles with and without Lean NOx and Oxidation Catalysts and Particulate Traps

The regulated and non-regulated emissions of a current diesel passenger car and two light-duty diesel trucks with catalysts and particulate traps were measured to better understand the effects of aftertreatment devises on the environment. The passenger car, a 1.8 L IDI TC Sierra, was tested both with and without three different diesel oxidation catalysts (DOC) and with two fuel sulfur levels, 0 and 0.05 wt%. One light-duty truck, a 2.5 L DI NA Transit, was tested on one fuel, 0.05 wt% sulfur, with and without three different particulate trap/regeneration systems and with and without a urea lean NOx catalyst (LNC) system. A second similar Transit was tested on the 0.05 wt% sulfur fuel with an electrically regenerated trap system. The results are compared to each other, regulated emission standards, and to emissions from gasoline vehicles.
Technical Paper

Diesel Particulate Control System for Ford 1.8L Sierra Turbo-Diesel to Meet 1997-2003 Particulate Standards

Feasibility of wall-flow diesel exhaust filter trap particulate aftertreatment emission control systems to meet the U.S. Federal, CARB, and EC passenger car standards for 1997/2003 and beyond for the 1360 kg (3000 lb.) EAO (Ford European Automotive Operations) 1.8 liter Sierra Turbo-Diesel passenger car is investigated. Plain and Pd catalyzed monolith wall flow diesel particulate traps are examined using Phillips No. 2 diesel fuel (Reference Standard), low sulfur (0.05% S) diesel fuel and an ultra-low sulfur (0.001% S) diesel fuel. Comparisons are made with baseline FTP75 and Highway exhaust emissions and Federal and CARB mandated particulate standards for 1997 and 2003. Effectiveness of catalyzed traps, plain traps, copper octoate trap regeneration fuel additive, and fuel sulfur content on the particulate emissions is determined.
Technical Paper

Underhood Thermal Management by Controlling Air Flow

A series of tests were conducted to determine the potential for reducing vehicle underhood temperatures by either 1) diverting the radiator fan air flow from the engine compartment or 2) by forced air cooling of the exhaust manifold in conjunction with shielding it or 3) by a combination of the two methods. The test vehicle was a Ford F-250 Light Truck with a 7.5L V-8 engine. The vehicle was tested in a dynamometer cell equipped with cell blowers to simulate road speed conditions. It was found that diverting the outlet air from the radiator will reduce underhood component temperatures when the vehicle is in motion and also at normal idle. However, if the vehicle is to be used for power takeoff applications requiring a “kicked” idle, then forced cooling of the exhaust manifolds is also required to maintain reduced underhood temperatures. A combination of these two techniques maximized the reduction of underhood temperatures for all operating conditions tested.
Technical Paper

Powertrain Development of the 1996 Ford Flexible Fuel Taurus

Two flexible fuel vehicles (FFVs) using dielectric alcohol sensors have been designed and developed for mass production. One FFV will operate on gasoline or methanol up to 85% (M85). The second FFV will operate on gasoline or ethanol up to 85% (E85). Significant modification of a conventional dedicated gasoline engine was necessary in order to avoid major problems in the areas of preignition, engine wear and material compatibility. Operation on alcohol fuels provides for improved torque and horsepower over gasoline. Feedgas emission levels with alcohol fuels are lower than those with gasoline. However, this advantage is diminished at the tailpipe due to the long catalytic converter light-off times that result from the lower combustion temperatures which characterize alcohol fuels. Meeting evaporative emission regulations provided a challenge due to the high levels of vapor generated by low alcohol percentage fuel blends.
Technical Paper

Joint Alternatives for Dual Inlet Mufflers

A joint system for a dual inlet muffler has been designed which allows the muffler system to be better aligned during assembly. The system uses a slip-fit joint coupled with a ball-and-flair joint. This combination decreases variations in manufacturing and assembly thus, improving tailpipe variability in the vehicle build. The slip-fit/ball-flair joint was compared to conventional inlet systems of flat flanges and flex-couplings. A Variable Simulation Analysis (VSA) audit, finite element analysis of the joint strengths, and variable cost study all showed advantages for the slip-fit/ball-flair system.
Technical Paper

Development of the 6.8L V10 Heat Resisting Cast-Steel Exhaust Manifold

This paper presents the experience of Ford Motor Company and Hitachi Metals Ltd., in the development and design of the exhaust manifolds for the new 1997 Ford 6.8L, Vl0 gasoline truck engine. Due to the high-exhaust temperature 1000 °C (1832 °F), heat-resisting nodular graphite irons, such as high-silicon molybdenum iron and austenitic iron with nickel cannot meet the durability requirements, mainly thermal fatigue evaluation. The joint effort by both companies include initial manifold design, prototype development, engine simulation bench testing, failure analysis, material selections (ferritic or austenitic cast steel), production processes (casting, machining) and final inspection. This experience can well be applied to the design and development of new cast stainless-steel exhaust manifolds in the future. This is valid due to the fact that US EPA is requiring all car manufacturers to meet the new Bag 6-Emission Standards which will result in increased exhaust gas temperature.
Technical Paper

The Effect of Vehicle Exhaust System Components on Flow Losses and Noise in Firing Spark-Ignition Engines

Sound attenuation and flow loss reduction are often two competing demands in vehicle breathing systems. The present study considers a full vehicle exhaust system and investigates both the sound attenuation and the flow performance of production configurations including the catalyst, the resonator, and the muffler. Dynamometer experiments have been conducted with a firing Ford 3.0L, V-6 engine at wide-open throttle with speeds ranging from 1000 to 5000 rpm. Measurements including the flow rates, the temperatures and the absolute dynamic pressures of the hot exhaust gases at key locations (upstream and downstream of every component) with fast-response, water-cooled piezo-resistive pressure transducers facilitate the calculation of acoustic performance of each component, as well as the determination of flow losses caused by these elements and their influence on the engine performance.
Technical Paper

Automotive Cabin Filtration In-Vehicle Test Results

This paper quantifies typical United States in-vehicle cowl area particulate filter parameters such as temperature, humidity and environmental conditions. Secondly, United States and Germany particulate filter fleet results will be included to help quantify the effect of loading on electret nonwoven particulate filter fractional efficiency and demonstrate the amount and types of particulate matter captured. Finally the paper will address the low submicron fractional filter efficiency of a simulated production “wet and dry” plate-fin automotive evaporator core.
Technical Paper

Analytical and Experimental Evaluation of a Thermally Insulated Automotive Exhaust System

For an automotive exhaust system, analytical evaluation of coatings, dual wall, multiwall, and blanket insulation methods indicated that the blanket insulation provided the best method for heat containment. An experimental vehicle was tested with and without a blanket insulation on the exhaust system over a demanding heat protection cycle. The exhaust gas, pipe wall, surrounding air, and adjacent component temperatures at 25 locations along the pipe are reported indicating reduced outer wall temperatures and good containment of the heat. A comparison of the heat lost through the exhaust system walls is presented.
Technical Paper

Development of a Tunable Stamped Collector to Improve Exhaust System Performance

A tunable stamped collector was developed to improve vehicle performance, drive-by noise and subjective noise quality, and reduced thermal stress concentrations. The stamped collector is located at the junction of the legs of the down pipe/catalytic converter assembly for a transverse mounted V-6 engine and acts to equalize the leg length of the down pipe, as well as provide acoustic tuning volume. This collector differs from most other methods to equalize leg lengths on transverse mounted engines in that it has a tuning chamber incorporated into the design itself, which allows for specific noise frequencies to be reduced. Performance characteristics were measured for a conventional down-pipe and the stamped collector using the following analysis techniques: Frequency analysis of tailpipe noise emissions. Drive-by noise emissions. Horsepower measurements using an engine dynamometer.
Technical Paper

Effect of Engine Operating Parameters on Hydrocarbon Oxidation in the Exhaust Port and Runner of a Spark-Ignited Engine

The effect of engine operating parameters (speed, spark timing, and fuel-air equivalence ratio [Φ]) on hydrocarbon (HC) oxidation within the cylinder and exhaust system is examined using propane or isooctane fuel. Quench gas (CO2) is introduced at two locations in the exhaust system (exhaust valve or port exit) to stop the oxidation process. Increasing the speed from 1500 to 2500 RPM at MBT spark timing decreases the total, cylinder-exit HC emissions by ∼50% while oxidation in the exhaust system remains at 40% for both fuels. For propane fuel at 1500 rpm, increasing Φ from 0.9 (fuel lean) to 1.1 (fuel rich) reduces oxidation in the exhaust system from 42% to 26%; at 2500 RPM, exhaust system oxidation decreases from 40% to approximately 0% for Φ = 0.9 and 1.1, respectively. Retarded spark increases oxidation in the cylinder and exhaust system for both fuels. Decreases in total HC emissions are accompanied by increased olefinic content and atmospheric reactivity.
Technical Paper

Time-Resolved Measurement of Speciated Hydrocarbon Emissions During Cold Start of a Spark-Ignited Engine

Speciated HC emissions from the exhaust system of a production engine without an active catalyst have been obtained with 3 sec time resolution during a 70°F cold start using two control strategies. For the conventional cold start, the emissions were initially enriched in light fuel alkanes and depleted in heavy aromatic species. The light alkanes fell rapidly while the lower vapor pressure aromatics increased over a period of 50 sec. These results indicate early retention of low vapor pressure fuel components in the intake manifold and exhaust system. Loss of higher molecular weight HC species does occur in the exhaust system as shown by experiments in which the exhaust system was preheated to 100° C. The atmospheric reactivity of the exhaust HC emissions for photochemical smog formation increases as the engine warms.
Technical Paper

The Effect of a Preload on the Decoupling Efficiency of Exhaust Flexible Coupling Devices

The variation in the decoupling effect of exhaust flexible couplings under a vertical preload caused by changes in the direction of the exhaust pipe routing was investigated. Both self-supporting and underbody flexible couplings were tested. The results indicate that, in general, a preload decreases the decoupling efficiency of both types of flexible couplings. In addition, the results indicate that the efficiency of the flexible coupling is effected by the following three conditions: the direction of preload with respect to gravity, the location of the preload relative to the coupling, and the stiffness of the various components of the flexible coupling.