Refine Your Search

Topic

Author

Search Results

Video

Ford: Driving Hybrid Efficiency

2012-03-23
Hybrid vehicles in the modern era were developed with a strong primary goal to increase fuel efficiency in the North American market. Over the last 15 years, this market has expanded from zero sales to as high as 3% of total US sales. Most recently, the portfolio of competitive offerings with HEV propulsion systems has grown even more to about 30 models on sale today. Some interesting features and attributes have evolved thru this wider array of products giving the customer much more choice of which characteristics to select to match their needs. Ford�s 3rd generation HEV system will be offered for sale this fall. With it, we have continued our focus on the Fuel Efficiency as the driving force for our efforts. The overall process for the system engineering and some of the relevant subsystem and component contributors to the Fuel Efficiency improvement reflected in the 2013 Model Year Fusion and CMAX Hybrids will be presented. Presenter Charles Gray, Ford Motor Co.
Technical Paper

Starter/Alternator Design for Optimized Hybrid Fuel Economy

2000-11-01
2000-01-C061
A Starter/Alternator (S/A) has been developed at Ford Research laboratories for hybrid electric vehicle applications. During development, the vehicle concept of operation and the system performance requirements were used to select the proper technology. The specification development, component selection and subsystem operation process is described. Subsystem performance and vehicle fuel economy are compared and evaluated using hybrid vehicle simulation analysis. These results can be used to identify potential subsystem modifications and alternative vehicle control strategies.
Technical Paper

Identification of the Optimum Vehicle Class for the Application of 42v Integrated Starter Generator

2000-11-01
2000-01-C073
Today nearly all automotive manufacturers are developing motor-generator systems for improved fuel economy by implementing idling-stop and other power train enhancements. It is said that powertrain technology has always pioneered the development of automotive electronic control throughout history. The integrated starter generator (ISG) promises to expand the scope of powertrain control further through fuel economy improvement, emissions reduction, longitudinal vehicle dynamics improvement and customer feature enhancements. At the present time the cost imposed by usage of an ISG system is very high due mainly to its need for a power optimized 42V battery and high power electronics. This paper takes a critical look at the vehicle benefits attributable to ISG and its implementation costs over various vehicle classes.
Technical Paper

Selection Families of Optimal Engine Designs Using Nonlinear Programming and Parametric Sensitivity Analysis

1997-05-01
971600
The selection process of key engine design variables to maximize peak power subject to fuel economy and packaging objectives is formulated as an optimization problem readily solved with nonlinear programming. The merit of this approach lies not in finding a single optimal engine, but in identifying a family of optimal designs dependent on parameter changes in the constraint set. Sensitivity analysis of the optimum to packaging parameters, fuel economy parameters, and manufacturing parameters is presented and discussed in the context of product development decisions.
Technical Paper

Scavenging of a Firing Two-Stroke Spark-Ignition Engine

1994-03-01
940393
Current demands for high fuel efficiency and low emissions in automotive powerplants have drawn attention to the two-stroke engine configuration. The present study measured trapping and scavenging efficiencies of a firing two-stroke spark-ignition engine by in-cylinder gas composition analysis. Intermediate results of the procedure included the trapped air-fuel ratio and residual exhaust gas fraction. Samples, acquired with a fast-acting electromagnetic valve installed in the cylinder head, were taken of the unburned mixture without fuel injection and of the burned gases prior to exhaust port opening, at engine speeds of 1000 to 3000 rpm and at 10 to 100% of full load. A semi-empirical, zero-dimensional scavenging model was developed based on modification of the non-isothermal, perfect-mixing model. Comparison to the experimental data shows good agreement.
Technical Paper

Dual Equal VCT - A Variable Camshaft Timing Strategy for Improved Fuel Economy and Emissions

1995-02-01
950975
In the Dual Equal variable camshaft timing strategy, the intake and exhaust events are equally phase-shifted relative to the crankshaft as a function of engine operating conditions. The primary emphasis is on improved fuel economy and emissions at part load. The external EGR system is potentially eliminated, with consequent improvement in the transient control of residual dilution. Additional benefits with optimized phasing are moderate improvements in idle stability and full load performance. In this paper, the Dual Equal VCT strategy is described, and engine dynamometer test results are shown which illustrate the benefits at part load, idle, and WOT. Implications of the strategy on phase-shifter response requirements and on the engine control system are discussed.
Technical Paper

Effects of Aging on Frictional Properties of Fuel Efficient Engine Oils

1995-10-01
952532
Obtaining the maximum benefits from advanced fuel efficient engine oils will require that those oils not only provide fuel efficiency when new but also throughout the service interval for the oil. The effects of laboratory and engine aging on the ability of an oil containing a molybdenum dialkyldithiocarbamate (MoDTC) additive to provide reduced friction have been investigated. Results of these studies show that the friction reducing capability of this oil, as measured in a laboratory test, was lost prior to depletion of the MoDTC. Interactions between MoDTC and other additives were found to be important with regard to providing friction reduction. Implications for development of advanced oils that will provide lasting fuel efficiency benefits are discussed.
Technical Paper

The Effect of Exhaust Gas Recirculation on Soot Formation in a High-Speed Direct-injection Diesel Engine

1996-02-01
960841
A number of tests were conducted on a 2.5 litre, high-speed, direct-injection diesel engine running at various loads and speeds. The aim of the tests was to gain understanding which would lead to more effective use of exhaust gas recirculation (EGR) for controlling exhaust NOx whilst minimising the penalties of increased smoke emission and fuel consumption. In addition to exhaust emission measurements, in-cylinder sampling of combustion gases was carried out using a fast-acting, snatch-sampling valve. The results showed that the effectiveness of EGR was enhanced considerably by cooling the EGR. In addition to more effective NOx control, this measure also improved volumetric efficiency which assisted in the control of smoke emission and fuel consumption. This second of two papers on the use of EGR in diesel engines deals with the effects of EGR on soot emission and on the engine fuel economy.
Technical Paper

Exact Constraint Design of Vehicle Components

1996-08-01
961687
An important basis of the technology strategy of the Partnership of a New Generation of Vehicles (PNGV), is the assumption that major advances in a number of different technologies must be made, before the realization of most of the challenging goals of the new generation of vehicles. One of those technologies is the reliance on lightweight alternative materials in order to produce lightweight components to achieve the projected fuel economy increases. However, this push toward lightweight components should not be on the basis of sacrificing vehicle performance, handling, reliability or safety. Toward this objective, engineers frequently are relying on super-fast computers as well as new approaches to achieve a new generation of designs of automotive components, based on some form of optimization techniques. These techniques however, usually imply increasing the number of constraints imposed on a particular design objective, which is the weight of the vehicle in this case.
Technical Paper

Performance of Plasmaspray Coated Bore 4.6L-V8 Aluminum Block Engines in Dynamometer and Fleet Vehicle Durability Tests

1997-02-24
970008
Application process, and performance in engine dynamometer and high mileage vehicle fleet durability tests of Plasmaspray coated bore aluminum block engines are discussed. Fuel economy, oil consumption, power and wear data for Ford 4.6L-V8 aluminum block engines utilizing very low cost iron/iron oxide base coatings, and stainless steel/BN solid film lubricant Plasmasprayed coatings are presented. Test results from Ford's 100 hour Piston & Gasket Engine Dynamometer Durability Tests, and Fleet Vehicle Durability Tests show ring/bore wear reductions of more than 40% relative to production cast iron bore systems with Oil Economy averaging more than 13,600 km/l (8000 mi/qt).
Technical Paper

Development and Application of the Ford Split Port Induction Concept

1996-05-01
961151
The search for fuel efficient engines that also offer good performance and fuel economy at moderate cost prompted the development of the Split Port Induction (SPI) concept at Ford Motor Company. Ford has upgraded two families of 2-valve engines, the 2.0L CVH 14 and the 3.8L and 4.2L Essex V6's, with the Split Port Induction concept. SPI offers an improved WOT torque curve, better part load dilution tolerance for fuel economy and superior idle combustion stability. This is accomplished by dividing the intake port into two passages and inserting an intake manifold runner control (IMRC) valve into the secondary passage. The opening of this valve determines the level of in-cylinder charge turbulence and volumetric efficiency according to engine operating conditions. The development of the concept and the improvements resulting from its application to these engines will be described and discussed.
Technical Paper

Compression Ratio and Coolant Temperature Effects on HC Emissions from a Spark- Ignition Engine

1995-02-01
950163
Modern four-valve engines are running at ever higher compression ratios in order to improve fuel efficiency. Hotter cylinder bores also can produce increased fuel economy by decreasing friction due to less viscous oil layers. In this study changes in compression ratio and coolant temperature were investigated to quantify their effect on exhaust emissions. Tests were run on a single cylinder research engine with a port-deactivated 4-valve combustion chamber. Two compression ratios (9.15:1 and 10.0:1) were studied at three air/fuel ratios (12.5, 14.6 and 16.5) at a part load condition (1500 rpm, 3.8 bar IMEP). The effect of coolant temperature (66 °C and 108°C) was studied at the higher compression ratio. The exhaust was sampled and analyzed for both total and speciated hydrocarbons. The speciation analysis provided concentration data for hydrocarbons present in the exhaust containing twelve or fewer carbon atoms.
Technical Paper

A Small Displacement DI Diesel Engine Concept for High Fuel Economy Vehicles

1997-08-06
972680
The small-displacement direct-injection (DI) diesel engine is a prime candidate for future transportation needs because of its high thermal efficiency combined with near term production feasibility. Ford Motor Company and FEV Engine Technology, Inc. are working together with the US Department of Energy to develop a small displacement DI diesel engine that meets the key challenges of emissions, NVH, and power density. The targets for the engine are to meet ULEV emission standards while maintaining a best fuel consumption of 200g/kW-hr. The NVH performance goal is transparency with state-of-the-art, four-cylinder gasoline vehicles. Advanced features are required to meet the ambitious targets for this engine. Small-bore combustion systems enable the downsizing of the engine required for high fuel economy with the NVH advantages a four- cylinder has over a three-cylinder engine.
Technical Paper

The Effect of Operating Conditions at Idle in the S.I. Engine

1997-10-01
972990
A gasoline engine with an electronically controlled fuel injection system has substantially better fuel economy and lower emissions than a carburetted engine. In general, the stability of engine operation is improved with fuel injector, but the stability of engine operation at idle is not improved compared with a carburetted gasoline engine. In addition, the increase in time that an engine is at idle due to traffic congestion has an effect on the engine stability and vehicle reliability. Therefore, in this research, we will study the influence of fuel injection timing, spark timing, dwell angle, and air-fuel ratio on engine stability at idle.
Technical Paper

Making the Case for a Next Generation Automotive Electrical System

1998-10-19
98C006
Introduction of an array of new electrical and electronic features into future vehicles is generating vehicle electrical power requirements that exceed the capabilities of today's 14 volt electrical systems. In the near term (5 to 10 years), the existing 14V system will be marginally capable of supporting the expected additional loads with escalating costs for the associated charging system. However, significant increases in vehicle functional content are expected as future requirements to meet longer-term (beyond 10 years) needs in the areas of emission control, fuel economy, safety, and passenger comfort. A higher voltage electrical system will be required to meet these future requirements. This paper explores the functional needs that will mandate a higher voltage system and the benefits derivable from its implementation.
Technical Paper

A Dynamometer Study of Off-Cycle Exhaust Emissions - The Auto/Oil Air Quality Improvement Research Program

1997-05-01
971655
Four vehicle fleets, consisting of 3 to 4 vehicles each, were emission tested on a 48″ roll chassis dynamometer using both the FTP urban dynamometer driving cycle and the REP05 driving cycle. The REP05 cycle was developed to test vehicles under high speed and high load conditions not included in the FTP. The vehicle fleets consisted of 1989 light-duty gasoline vehicles, 1992-93 limited production FFV/VFV methanol vehicles, 1992-93 compressed natural gas (CNG) vehicles and their gasoline counterparts, and a 1992 production and two prototype ethanol FFV/VFV vehicles. All vehicles (except the dedicated CNG vehicles) were tested using Auto/Oil AQIRP fuels A and C2. Other fuels used were M85 blended from A and C2, E85 blended from C1, which is similar to C2 but without MTBE, and four CNG fuels representing the range of in-use CNG fuels. In addition to bag measurements, tailpipe exhaust concentration and A/F data were collected once per second throughout every test.
Technical Paper

High Speed Fuel Injection System for 2-Stroke D.I. Gasoline Engine

1991-02-01
910666
Two-stroke gasoline engines are known to benefit from using in-cylinder fuel injection which improves their ability to meet the strict fuel economy and exhaust emissions requirements. A conventional method of in-cylinder fuel injection involves application of plunger-type positive displacement pumps. Two-stroke engines are usually smaller and lighter than their 4-stroke counterparts of equal power and need a pump that should also be small and light and, preferably, simple in construction. Because a 2-stroke engine fires every crankshaft revolution, its fuel injection pump must run at crankshaft speed (twice the speed of a 4-stroke engine pump). An electronically controlled fuel injection system has been designed to satisfy the needs of a small automotive 2-stroke engine capable of running at speeds of up to 6000 rpm.
Technical Paper

The Corporate Technical Information System: The Ford Inhouse information Utility

1987-10-01
871927
Ford Motor Company has developed an inhouse computerized database of product and technical data as an information utility for product and manufacturing engineers and business and marketing analysts. The Corporate Technical Information System (CTIS) is interactive, user friendly, up-to-date, and low cost. CTIS is designed to complement commercial information services. The menu driven program gives users access to IS files including automotive periodical abstracts, vehicle dimensional data, EPA fuel economy data. SAE paper abstracts since 1966, and worldwide materials standards. Searching is done through User defined keywords using Boolean logic to create individual search strategies. CTIS has been used by Ford personnel worldwide since early 1985. Future developments may include offering CTIS to vendors or components and services to Ford Motor Company.
Technical Paper

Ford 7.8 L Diesel Engine Charge Air Cooling System Density Recovery Optimization with Air-to-Air Cooling

1987-11-01
872224
Ford Motor Company has developed its 6.6 and 7.8 litre diesel engines for use in Class 6 and 7 vehicles. All engines in these two families are turbocharged and some are after cooled, with either jacket water or air. To improve horsepower ratings, fuel economy, and emission levels, the charge air is cooled to increase its density and thus the combustion efficiency. This paper reports the results of a joint study by Ford and Thermag Industries to optimize the air-to-air cooling system with respect to system pressure losses, thus achieving the highest possible density recovery ratio. It is noted that the theoretical density recovery ratio can be greater than 1.0, that is, a net pressure gain can be achieved through proper conversion of velocity head to static pressure, although practically this ratio will usually be less than 1.0.
Technical Paper

TiAl-Based Alloys for Exhaust Valve Applications

1993-03-01
930620
The recent development of TiAl-based alloys by the aerospace community has provided an excellent material alternative for hot components in automotive engines. The low density combined with an elevated temperature strength similar to that of Ni-base superalloys make TiAl-based alloys very attractive for exhaust valve applications. Lighter weight valvetrain components improve performance and permit the use of lower valve spring loads which reduce noise and friction and enhance fuel economy. However, difficult fabricability and a perception that TiAl alloys are high cost, low volume aerospace materials must be overcome in order to permit consideration for use in high-volume automotive applications. This paper provides a comparison of properties for several exhaust valve alternative materials. The density of TiAl alloys is lower than Ti alloys with creep and fatigue properties equivalent to IN-751, a current high performance exhaust valve material.
X