Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Combined Fe-Cu SCR Systems with Optimized Ammonia to NOx Ratio for Diesel NOx Control

2008-04-14
2008-01-1185
Selective catalytic reduction (SCR) is a viable option for control of oxides of nitrogen (NOx) from diesel engines. Currently, copper zeolite (Cu-zeolite) SCR catalysts are favored for configurations where the exhaust gas temperature is below 450°C for the majority of operating conditions, while iron zeolite (Fe-zeolite) SCR catalysts are preferred where NOx conversion is needed at temperatures above 450°C. The selection of Cu-zeolite or Fe-zeolite SCR catalysts is based on the different performance characteristics of these two catalyst types. Cu-zeolite catalysts are generally known for having efficient NOx reduction at low temperatures with little or no NO2, and they tend to selectively oxidize ammonia (NH3) to N2 at temperatures above 400°C, leading to poor NOx conversion at elevated temperatures.
Journal Article

The Effect of Hydrocarbons on the Selective Catalyzed Reduction of NOx over Low and High Temperature Catalyst Formulations

2008-04-14
2008-01-1030
Selective Catalytic Reduction of NOx is a promising technology to enable diesel engines to meet certification under Tier 2 Bin 5 emissions requirements. SCR catalysts for vehicle use are typically zeolitic materials known to store both hydrocarbons and ammonia. Ammonia storage on the zeolite has a beneficial effect on NOx conversion; hydrocarbons however, compete with ammonia for storage sites and may also block access to the interior of the zeolites where the bulk of the catalytic processes take place. This paper presents the results of laboratory studies utilizing surrogate hydrocarbon species to simulate engine-out exhaust over catalysts formulated to operate in both low (≈175-500°C) and high temperature (≈250-600°C) regimes. The effects of hydrocarbon exposure of these individual species on the SCR reaction are examined and observations are made as to necessary conditions for the recovery of SCR activity.
Technical Paper

Influence of Hydrocarbon Storage on the Durability of SCR Catalysts

2008-04-14
2008-01-0767
Selective catalytic reduction (SCR) is a technology capable of meeting Tier 2 Bin 5 emissions levels of oxides of nitrogen (NOX) for diesel engines. Base metal zeolite catalysts show the best combination of thermal durability and NOX conversion activity. It is shown in this work that some base metal zeolite catalysts can store high levels of hydrocarbons (HCs). Also, base metal zeolite catalysts can catalyze oxidation of HCs under certain conditions. Oxidation of stored hydrocarbons can lead to permanent catalyst deactivation due to the exotherm generated in the SCR catalyst (over-temperature condition leading to SCR catalyst damage). This paper discusses a laboratory bench test to characterize hydrocarbon storage and burn-off characteristics of several SCR catalyst formulations, as well as engine dynamometer tests showing hydrocarbon storage and exotherm generation.
X