Refine Your Search




Search Results

Journal Article

An Advanced and Comprehensive CAE Approach of Piston Dynamics Studies for Piston Optimal and Robust Design

A successful piston design requires eliminate the following failure modes: structure failure, skirt scuffing and piston unusual noise. It also needs to deliver least friction to improve engine fuel economy and performance. Traditional approach of using hardware tests to validate piston design is technically difficult, costly and time consuming. This paper presents an up-front CAE tool and an analytical process that can systematically address these issues in a timely and cost-effectively way. This paper first describes this newly developed CAE process, the 3D virtual modeling and simulation tools used in Ford Motor Company, as well as the piston design factors and boundary conditions. Furthermore, following the definition of the piston design assessment criteria, several piston design studies and applications are discussed, which were used to eliminate skirt scuffing, reduce piston structure dynamic stresses, minimize skirt friction and piston slapping noise.
Journal Article

Experimental Evaluation of Advanced Turbocharger Performance on a Light Duty Diesel Engine

For diesel engines to meet current and future emissions levels, the amount of EGR required to reach these levels has increased dramatically. This increased EGR has posed big challenges for conventional turbocharger technology to meet the higher emissions requirements while maintaining or improving other vehicle attributes, to the extent that some OEMs resort to multiple turbocharger configurations. These configurations can include parallel, series sequential, or parallel - series turbocharger systems, which would inevitably run into other issues, such as cost, packaging, and thermal loss, etc. This study, as part of a U.S. Department of Energy (USDoE) sponsored research program, is focused on the experimental evaluation of the emission and performance of a modern diesel engine with an advanced single stage turbocharger.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

On Using a CFD Based Global Kinetic Reaction Model to Simulate Catalyst Exotherm with Exhaust Fuel Dosing Device (Fuel Vaporizer)

Under the current emissions legislation, most of the diesel-powered vehicles have to use Diesel Particulate Filters (DPF) to remove soot particles from the exhaust gas and the accumulated soot particles have to be removed in regular intervals. To initialize the exhaust gas temperature for soot regeneration, diesel fuel is either injected into the combustion chamber in late engine cycle (e.g. post injection) or vaporized and then discharged into the exhaust gas via a dosing device (e.g. fuel vaporizer). Both approaches though require the exothermic catalyst to convert the fuel into thermal energy. For practical reasons, this paper is concentrated on describing how CFD could be used to model the fuel distribution in an aftertreatment system equipped with fuel vaporizer and the exothermic reactions in the catalysts.
Technical Paper

Aluminum Cylinder Head High Cycle Fatigue Durability Including the Effects of Manufacturing Processes

High cycle fatigue material properties are not uniformly distributed on cylinder heads due to the casting process. Virtual Aluminum Casting (VAC) tools have been developed within Ford Motor Company to simulate the effects of the manufacturing process on the mechanical properties of cast components. One of VAC features is the ability to predict the high cycle fatigue strength distribution. Residual stresses also play an important role in cylinder head high cycle fatigue, therefore they are also simulated and used in the head high cycle fatigue analysis. Cylinder head assembly, thermal and operating stresses are simulated with ABAQUS™. The operating stresses are combined with the residual stresses for high cycle fatigue calculations. FEMFAT™ is used for the high cycle fatigue analysis. A user-defined Haigh diagram is built based on the local material properties obtained from the VAC simulation.
Journal Article

Effects of Non-Associated Flow on Residual Stress Distributions in Crankshaft Sections Modeled as Pressure-Sensitive Materials under Fillet Rolling

In this paper, the evolution equation for the active yield surface during the unloading/reloading process based on the pressure-sensitive Drucker-Prager yield function and a recently developed anisotropic hardening rule with a non-associated flow rule is first presented. A user material subroutine based on the anisotropic hardening rule and the constitutive relation was written and implemented into the commercial finite element program ABAQUS. A two-dimensional plane strain finite element analysis of a crankshaft section under fillet rolling was conducted. After the release of the roller, the magnitude of the compressive residual hoop stress for the material with consideration of pressure sensitivity typically for cast irons is smaller than that without consideration of pressure sensitivity. In addition, the magnitude of the compressive residual hoop stress for the pressure-sensitive material with the non-associated flow rule is smaller than that with the associated flow rule.
Technical Paper

Using Engine as Torsional Shaker for Vehicle Sensitivity Refinement at Idle Conditions

Vehicle idle quality has become an increasing quality concern for automobile manufacturers because of its impact on customer satisfaction. There are two factors that critical to vehicle idle quality, the engine excitation force and vehicle sensitivity (transfer function). To better understand the contribution to the idle quality from these two factors and carry out well-planned improvement measures, a quick and easy way to measure vehicle sensitivity at idle conditions is desired. There are several different ways to get vehicle sensitivity at idle conditions. A typical way is to use CAE. One of the biggest advantages using CAE is that it can separate vehicle sensitivities to different forcing inputs. As always, the CAE results need to be validated before being fully utilized. Another way to get vehicle sensitivity is through impact test using impact hammer or shaker. However this method doesn't include the mount preload due to engine firing torque [3, 4, & 5].
Technical Paper

Incorporating Design Variation into a 1-D Analytical Model of a 4.6L-4V Ford Engine for Improving Performance Projections

One-dimensional simulation tools are used extensively in the automotive industry to improve and optimize engine design for WOT performance. They are useful in target setting and in assessing the effects of certain design changes (e.g. intake manifold, valve timing, exhaust manifold, etc.). Generally the inputs to these models are “nominal” values or curves from a particular set of data and, therefore, do not take into account design or assembly variations. Often times, performance expectations are not met due to these “real world” effects and may result in significant re-design and testing efforts. The purpose of this paper is to assess the impact of typical model input variation on engine performance and to instill greater confidence in the use of these models in forecasting performance. The approach taken is to collect, analyze, and categorize actual build measurements from a 4.6L 4V Ford engine that are considered important inputs for a one-dimensional modeling.
Technical Paper

Analytical Assessment of Simplified Transient Fuel Tests for Vehicle Transient Fuel Compensation

Good air/fuel ratio (A/F) control is essential to high quality combustion performance, drivability and emissions in internal combustion engine powered vehicles. Cold start and transient fuel wall wetting effects cause significant A/F control challenges in port fuel injected (PFI) engines. Transient fuel compensation (TFC) strategies are used to help control the A/F during cold starts and transient load and RPM conditions for good vehicle performance, but developing optimum TFC strategies and calibrations in a vehicle with many competing effects is very difficult. Thus, simplified transient tests such as fuel or throttle perturbation tests are often used to develop and validate new strategies or calibrations for use in vehicle. This paper will illustrate the use of a validated physical model to analytically assess the value of fuel and throttle perturbation tests for developing a TFC calibration for vehicle use.
Technical Paper

Statistical Analysis of Rigid Body Modes of Engine Mounting System Due to Mount Rates Variability

While the engine mount rates need to be optimized to achieve the required frequency alignment and modal decoupling for quality performance, the robustness of the system needs to be studied as well. If a system exhibits acceptable modal characteristics with nominal optimized rates, the sensitivity of the system to variation of the rates from their nominal values affects the robustness of the system. Different factors can cause variation of the rates. Among them are rate changes from part to part arising from manufacturing process. In this paper the effect of mount rates variability on the modal characteristics is discussed. Monte Carlo simulation is used to predict how the rigid body modes and their couplings vary when the rate for each mount changes according to its statistical parameters. Through different examples the statistical variability of the modes to the rates variability is presented.
Technical Paper

Modeling the Evaporative Emissions of Oil-Fuel Mixtures

Motor vehicle hydrocarbon evaporative emissions are a crucial part of emissions regulations, and increasingly-stringent regulations stipulate essentially zero fuel-based hydrocarbon evaporative emissions. In port fuel injected engines, there is the potential for accumulation of PCV effluent in the intake system under certain vehicle operating conditions. The majority of this effluent is oil, but a percentage has been shown to be fuel. The percentage of fuel in this oil-fuel mixture in the intake is at a minimum equivalent to the fuel dilution level of the crankcase oil, and at times can be higher due to other sources of fuel, and fuel vapor, in the intake. This accumulation of liquid oil-fuel mixture can be a contributor of hydrocarbon evaporative emissions migrating out of the air induction system when subjected to transient temperatures while the engine is off.
Technical Paper

An Investigation of Engine Start-Stop NVH in A Power Split Powertrain Hybrid Electric Vehicle

The auto industry is responding to the environmental and energy conservation concerns by gradually producing mass-production of hybrid electric vehicles (HEV) as well as conducting development of fuel cell vehicles. One of many challenges of putting a customer-satisfactory HEV on the road is to develop “imperceptible” engine start-stops. This paper presents an investigation of engine start-stop NVH in a power split powertrain HEV. This investigation includes analyzing the root cause of engine start-stop NVH issues, developing the methodology and metric to gauge NVH improvement, and developing measures to resolve the NVH issues. The effectiveness of some proposed counter measures are presented and discussed through vehicle testing results. Finally, the overall NVH improvement of engine start-stop with implementation of practical counter measures is also presented.
Technical Paper

CAE Simulation and Experimental Testing of a CVT Vehicle Shuffle

A low-frequency vehicle shuffle can be excited when a reversal of torque occurs in a vehicle's drivetrain. It usually occurs during a throttle tip-in or tip-out event, or a static engagement shift event. This drivetrain shuffle vibration can introduce a vehicle fore-aft vibration that may affect the customer satisfaction of ride comfort and/or powertrain performance. Vehicle test data of the seat track acceleration from a 30 MPH wide-open-throttle tip-out event suggested a strong coupling between the CVT drivetrain shuffle and vehicle fore-aft vibration. An ADAMS based CVT model was developed and integrated into a full vehicle model for dynamic simulation of this vehicle shuffle issue. CAE DOE studies were performed to identify key vehicle and powertrain design parameters that could directly impact the vehicle shuffle vibration. Experimental tests were performed to verify the CAE design improvements of the CVT vehicle shuffle vibration.
Technical Paper

Stochastic Analysis of Power Train Rigid Body Modes

This work is focused on the computer aided engineering noise and vibration control area (CAE-NVH), which is one of the most important in the automobile industry. The reason for that relevancy is that the noise and vibration effects can be directly perceived by the costumer. The vibration of the seats and steering wheel, as well as audible noises are some examples of factors that can cause discomfort to the driver. During the early design of a car, the systems are designed in a way to reach a good modal management level in order to avoid resonance problems. The finite element models, used to predict these resonances, are normally generated using only deterministic values for the model parameters such as stiffnesses, thicknesses and masses. However, these properties have an uncertainty due to the manufacturing process which is, in most cases, not taken into consideration during the design.
Technical Paper

Parameterization and FEA Approach for the Assessment of Piston Characteristics

Elastohydrodynamic lubrication, piston dynamics and friction are important characteristics determining the performance and efficiency of an internal combustion engine. This paper presents a finite element analysis on a production piston of a gasoline engine performed using commercial software, the COSMOSDesignStar, and a comprehensive cylinder-kit simulation software, the CASE, to demonstrate the advantages of using a reduced, parameterized model analysis in the assessment of piston design characteristics. The full piston model is parameterized according to the CASE specifications. The two are analyzed and compared in the COSMOSDesignStar, considering thermal and mechanical loads. The region of interest is the skirt area on the thrust and anti-thrust sides of the piston.
Technical Paper

Development of a Thermoplastic Cam Cover for a 4.0L V6 SOHC Engine

The increasing demands to reduce cost is forcing North American Automotive designers towards finding ways to use the thermoplastic material for the under hood components. The use of this material has often been avoided in this type of applications due to concerns around its long-term strength and temperature performance. In particular, the materials of choice for the engine cam cover are Aluminum, Magnesium and Vinyl Ester (Thermoset) although thermoplastic is widely used in Europe and Asia. This paper examines the potential of a thermoplastic cam cover designed to replace the thermoset cam cover in a 4.0L SOHC V6 engine. Experimental data, presented in this paper, demonstrate that a well-designed thermoplastic cam cover can achieve key functional requirements, such as NVH and sealing, while providing substantial cost saving.
Technical Paper

Development of Experimental Methods to Validate Residual Stress Models for Cast Aluminum Components

The prediction of residual stresses due to manufacturing is of high importance in product development. For the accurate prediction of residual stresses in metallic components, an understanding of the quenching process that occurs in many heat treatments is required. In this paper, the experimental techniques developed to quantify the temperature fields during quenching and to quantify the residual stresses in the quenched part are presented. The temperature fields were quantified using thermocouples embedded in the components. The residual stresses were quantified using a newly developed strain gauging, sectioning and dynamic data acquisition technique. The techniques were verified using thermal histories and residual stresses for an engine cylinder head quenched at two different quenchant temperatures. The measurements obtained were incorporated into an analytical program (finite element) to study the residual stresses produced during the quenching process.
Technical Paper

Detailed Hydrocarbon Species and Particulate Emissions from a HCCI Engine as a Function of Air-Fuel Ratio

Concentrations of individual species in the engine-out exhaust gas from a gasoline-fueled (101.5 or 91.5 RON), direct-injection, compression-ignition (HCCI) engine have been measured by gas chromatography over the A/F range 50 to 230 for both stratified and nearly homogeneous fuel-air mixtures. The species identified include hydrocarbons, oxygenated organic species, CO, and CO2. A single-cylinder HCCI engine (CR = 15.5) with heated intake charge was used. Measurements of the mass and size distribution of particulate emissions were also performed. The 101.5 RON fuel consisted primarily of five species, simplifying interpretation of the exhaust species data: iso-pentane (24%), iso-octane (22%), toluene (17%), xylenes (10%), and trimethylbenzenes (9%).
Journal Article

Applications of CFD Modeling in GDI Engine Piston Optimization

This paper describes a CFD modeling based approach to address design challenges in GDI (gasoline direct injection) engine combustion system development. A Ford in-house developed CFD code MESIM (Multi-dimensional Engine Simulation) was applied to the study. Gasoline fuel is multi-component in nature and behaves very differently from the single component fuel representation under various operating conditions. A multi-component fuel model has been developed and is incorporated in MESIM code. To apply the model in engine simulations, a multi-component fuel recipe that represents the vaporization characteristics of gasoline is also developed using a numerical model that simulates the ASTM D86 fuel distillation experimental procedure. The effect of the multi-component model on the fuel air mixture preparations under different engine conditions is investigated. The modeling approach is applied to guide the GDI engine piston designs.