Refine Your Search

Topic

Author

Search Results

Journal Article

Stress-Corrosion Cracking Evaluation of Hot-Stamped AA7075-T6 B-Pillars

2017-03-28
2017-01-1271
High-strength aluminum alloys such as 7075 can be formed using advanced manufacturing methods such as hot stamping. Hot stamping utilizes an elevated temperature blank and the high pressure stamping contact of the forming die to simultaneously quench and form the sheet. However, changes in the thermal history induced by hot stamping may increase this alloy’s stress corrosion cracking (SCC) susceptibility, a common corrosion concern of 7000 series alloys. This work applied the breaking load method for SCC evaluation of hot stamped AA7075-T6 B-pillar panels that had been artificially aged by two different artificial aging practices (one-step and two-step). The breaking load strength of the specimens provided quantitative data that was used to compare the effects of tensile load, duration, alloy, and heat treatment on SCC behavior.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Effects of Fuel Volatility, Load, and Speed on HC Emissions Due to Piston Wetting

2001-05-07
2001-01-2024
Piston wetting can be isolated from the other sources of HC emissions from DISI engines by operating the engine predominantly on a gaseous fuel and using an injector probe to impact a small amount of liquid fuel on the piston top. This results in a marked increase in HC emissions. In a previous study, we used a variety of pure liquid hydrocarbon fuels to examine the influence of fuel volatility and structure on the HC emissions due to piston wetting. It was shown that the HC emissions correspond to the Leidenfrost effect: fuels with very low boiling points yield high HCs and those with a boiling point near or above the piston temperature produce much lower HCs. All of these prior tests of fuel effects were performed at a single operating condition: the Ford World Wide Mapping Point (WWMP). In the present study, the effects of load and engine speed are examined.
Technical Paper

Managing Thermal Growth for Large Class “A” Polymer Body Panel Closure Systems

2002-01-04
2002-01-0276
The history behind Polymer Class “A” Body Panels for automotive applications is very interesting. The driving factors behind these applications have not changed significantly over the past sixty years. Foremost among these factors is the need for corrosion and dent resistance. Beginning with Saturn in 1990, interest in polymer body panels grew and continues to grow up to the present day, with every new global application. Today, consumers and economic factors drive the industry trend towards plastic body panels. These include increased customization and fuel economy on the consumer side. Economic factors such as lower unit build quantities, reduced vehicle mass, investment cost, and tooling lead times influence material choice for industry. The highest possible performance, and fuel economy, at the lowest price have always been a goal.
Technical Paper

Residual Stresses in Cup Drawing of Automotive Alloys

2002-07-09
2002-01-2135
Residual stresses in metals are caused by a number of processes such as inhomogeneous deformation, phase changes and temperature gradients. This investigation focuses on the residual stresses caused by plastic deformation of automotive metals. Such stresses are responsible for part springback and shape distortion in many manufacturing and assembly processes. Tensile residual stresses may lead to stress cracking and, in some alloys, to stress corrosion cracking which may ultimately lead to premature product failure. The residual stress potential of metals can be evaluated by using the Split Ring Test Method. The test can be used to evaluate the effect of materials on residual stresses in cup drawing. Drawn cups are used because they produce large amounts of residual stresses and, therefore, increase measurement accuracy and reduce experimental error. A closed form analytical solution is used to estimate residual stresses in split rings taken from sections cut from the drawn cups.
Technical Paper

Effects of Engine Oil Formulation Variables on Exhaust Emissions in Taxi Fleet Service

2002-10-21
2002-01-2680
The relationship between engine oil formulations and catalyst performance was investigated by comparatively testing five engine oils. In addition to one baseline production oil with a calcium plus magnesium detergent system, the remaining four oils were specifically formulated with different additive combinations including: one worst case with no detergent and production level zinc dialkyldithiophosphate (ZDTP), one with calcium-only detergent and two best cases with zero phosphorus. Emissions performance, phosphorus loss from the engine oil, phosphorus-capture on the catalyst and engine wear were evaluated after accumulating 100,000 miles of taxi service in twenty vehicles. The intent of this comparative study was to identify relative trends.
Technical Paper

Selective Galvanizing Using Kinetic Spraying

2003-03-03
2003-01-1237
General corrosion protection of sheet materials such as steel used in automobile construction has reached a high level of performance, due primarily to the incorporation of mill-applied treatments such as electrogalvanizing, galvannealing and other coil-coating processes developed over the last half century. While such treatments have greatly extended the corrosion resistance of steel and its various body constructs, attention is now focused on aspects of the manufacturing process wherein these intended protections are compromised by such features as weldments, joins, cut edges and extreme metal deformations such as hems. A novel metal deposition process, based on high-velocity impact fusion of solid metal particles, has been used to extend the corrosion resistance of base steel and pre-galvanized sheet, by selectively placing highly controlled depositions of zinc and other sacrificial materials in close proximity to critical manufacturing details.
Technical Paper

An Obliquely Incident X-Ray Radiography to Measure Greatest Corrosion Depths in Automobile Metallic Plates

2003-03-03
2003-01-1241
An obliquely incident X-ray radiography was developed to measure the greatest depths, orientations and locations of corrosion pits in automobile metallic plates. This technique can also be used on-site for components in use. The corrosion depth profile and the greatest depth can be calculated with the established relations. A 3-D rotational microscope and surface profiler were utilized to evaluate the sensitivities and accuracies of the technique for aluminum and steel plates, respectively.
Technical Paper

A Rapid Screening Test to Assess Relative Corrosion Performance of Automotive Condensers

2017-03-28
2017-01-0174
A simple and rapid immersion type corrosion test has been successfully developed that discriminates corrosion performance in condensers from various suppliers and with differing manufacturing processes. The goal is to develop a test specification that will be included in the Ford corrosion specification for condensers so that condensers received from various suppliers may be evaluated rapidly for their relative corrosion performance to each other. Sections from condensers from Supplier A (tube is silfluxed), Supplier B (tube is zinc arc sprayed), and Supplier C (bare folded tube with no zinc for corrosion protection) were tested in 2% v/v hydrochloric acid for 16, 24 and 48 hours. The results showed that in terms of corrosion performance, zinc arc sprayed Supplier B condenser performed the worst while Supplier C condenser performed the best with Supplier A in between. It was also observed that the fins, and fin-to-tube joints were first to corrode followed by the tube in all cases.
Technical Paper

Method Development for Evaluating Microbiological Growth on and Attachment to Aluminum Air Conditioner Evaporator Core Surfaces

2006-04-03
2006-01-1645
Corrosion failures of aluminum air conditioner evaporator cores have been reported in regions where the climate is relatively warm and humid. Microbiologically-influenced corrosion [MIC] has been implicated in these failures. Application of surface-treatment chemicals may inhibit microbiological (bacterial) growth and/or attachment, thereby reducing the potential for MIC. In this study, two laboratory methods were developed to evaluate selected surface-treatment chemicals for their ability to inhibit bacterial growth and reduce bacterial attachment to treated surfaces. Using the developed methods, two controlled-atmosphere brazed aluminum core materials and three surface-treatment chemicals were evaluated. Neither of the untreated core materials was found to inhibit the growth of the bacteria tested.
Technical Paper

Faster is Better: The Effect of Internal Turbulence on DOC Efficiency

2006-04-03
2006-01-1525
A number of metallic oxidation catalyst substrates with advanced internal structures have emerged in the past few years. In an aftertreatment application, these structures improve gas mixing by increasing turbulence within the substrate's matrix. Modeling results show these advanced structures, under some operating conditions, can be correlated to reductions in catalyst substrate volume and precious metal 1,2. Three structured metallics were compared to a baseline ceramic substrate in a designed experiment to understand the effect of advanced metallic substrates on diesel oxidation catalyst (DOC) sizing and performance. The results showed that smaller metallic DOCs coated with up to 30% less precious metal (PM) catalyst performed on par or better than the baseline ceramic DOC in terms of hydrocarbon conversion, heat-up, and pressure drop.
Technical Paper

Accelerated Corrosion Testing of Automotive Evaporators and Condensers

2018-04-03
2018-01-0062
There is an ongoing effort in the industry to develop an accelerated corrosion test for automotive heat exchangers. This has become even more important as automakers are focusing on corrosion durability of 15 years in the field versus current target of 10 years. To this end an acid immersion test was developed and reported in a previous paper for condensers (1). This paper extends those results to evaporators and establishes the efficacy of the test using these results and those reported in the literature. The paper also discusses variability in corrosion test results as observed in tests such as ASTM G85:A3 Acidified Synthetic Sea Water Test (SWAAT), and its relation to field durability.
Technical Paper

Aqueous Corrosion of Experimental Creep-Resistant Magnesium Alloys

2006-04-03
2006-01-0257
This paper presents a comparison of aqueous corrosion rates in 5% NaCl solution for eight experimental creep-resistant magnesium alloys considered for automotive powertrain applications, as well as three reference alloys (pure magnesium, AM50B and AZ91D). The corrosion rates were measured using the techniques of titration, weight loss, hydrogen evolution, and DC polarization. The corrosion rates measured by these techniques are compared with each other as well as with those obtained with salt-spray testing using ASTM B117. The advantages and disadvantages of the various corrosion measurement techniques are discussed.
Technical Paper

Oxidation and Antiwear Retention Capability of Low-Phosphorus Engine oils

2005-10-24
2005-01-3822
Future vehicle emission regulations both in the US and Europe will require maintaining catalyst efficiency for longer mileage intervals. In order to achieve this requirement, chemical restrictions are being placed on elements in engine oil that can poison catalysts. Most of phosphorus and a significant amount of sulfur in current engine oils come from zinc dialkyldithiophosphates, ZDDPs, which are a class of cost-effective multifunctional additives providing wear, oxidation and corrosion protection. Reducing ZDDP concentrations raises oxidation and wear concerns. The overall purpose of this research is to look at the antioxidation and antiwear capability of low phosphorus engine oils containing 0.05 wt% phosphorus and the potential of engine oils formulated without phosphorus. In addition to fresh oils, used oils drained from fleet vehicles were also analyzed and evaluated.
Technical Paper

A Comparative Study of Dent Resistance Incorporating Forming Effects

2005-04-11
2005-01-0089
Dent resistance is an important attribute in the automotive panel design, and the ability to accurately predict a panel's dentability requires careful considerations of sheet metal properties, including property changes from stamping process. The material is often work-hardened significantly during forming, and its thickness is reduced somewhat. With increased demand for weight reduction, vehicle designers are seriously pushing to use thinner-gauged advanced high-strength steels (AHSS) as outer body panels such as fenders, hoods and decklids, with the expectation that its higher strength will offset reduced thickness in its dentability. A comparative study is conducted in this paper for a BH210 steel fender as baseline design and thinner DP500 steel as the new design.
Technical Paper

2005 Fuel Cell Vehicle and its Magnesium Power Distribution Unit

2005-04-11
2005-01-0339
The High Voltage Power Distribution Unit (PDU) is constructed of magnesium in support of Fuel Cell Electric Vehicle (FCEV) weight reduction efforts. The PDU distributes and controls a nominal 75 kilowatts of power generated by the Fuel Cell, the primary source of High Voltage power, to all the vehicle loads and accessories. The constraints imposed on the design of the PDU resulted in a component highly susceptible to general and galvanic corrosion. Corrosion abatement was the focus of the PDU redesign. This paper describes the redesign efforts undertaken by Ford personnel to improve the part robustness and corrosion resistance.
Technical Paper

The Relative Effect of Paint Film Thickness on Bimetallic and Crevice Corrosion

1986-02-01
860109
The proliferation of Unibody construction, for vehicle weight reduction, and the expanded use of precoated steel, for improvement in outer body rust-through protection, has significantly increased the number of bimetallic and crevice unions on U.S. manufactured vehicles. Cyclic corrosion and proving ground testing has shown that these unions are highly active electrochemically, resulting in extensive anodic corrosion and cathodic de-lamination of the paint film. This work examines the individual contribution of each layer of the applied protective coatings package, with respect to applied film thickness, to the reduction of permeation by water, oxygen, and NaCl and resultant corrosion.
Technical Paper

The Aluminum Beaker Oxidation Test for MERCON™ World-Wide Service ATF

1988-10-01
881673
The Aluminum Beaker Oxidation Test is one of the tests specified for MERCONtm service ATF. The test is now being run at independent laboratories. Passing this and other specified tests is part of the process required to obtain a licence to describe an ATF as MERCONtm. The performance of test facilities at independent laboratories has been monitored by evaluating test data obtained with reference ATFs provided by Ford. The data so obtained, together with data obtained at Ford and other laboratories, have been used to generate a statistically significant data base. This data base has been used to better define test repeatability and reproducibility and thus provide an improved basis for monitoring the performance of test facilities. This paper provides a summary of the test procedure, reviews the data supporting the validity of the test, and presents information on the repeatability and reproducibility of the test method.
Technical Paper

Full Scale Burn Test of Four Aluminum Body Ford F-150’s

2017-03-28
2017-01-1355
Four full scale burn tests on aluminum body Ford F-150’s were conducted with four unique origins. The purpose of these burn tests was to determine if the origin of the fire could be accurately identified after the vehicle fires progressed to near complete burn (with near absence of the aluminum body panels). The points of origin for the four burn tests were: 1) Engine Compartment - driver’s side front of engine compartment, 2) Passenger Compartment - Instrument panel, driver’s side near the headlamp switch, 3) Passenger Compartment - passenger side rear seat, 4) Outside of Vehicle - passenger side front tire. Photographic, video, and temperature data was recorded to document the burn process from initiation to extinguishment. Post-fire analysis was conducted in an attempt to determine the origin of the fire based solely on the burn damage.
X