Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Journal Article

Semi-Empirical CFD Transient Simulation of Engine Air Filtration Systems

2016-04-05
2016-01-1368
To improve fuel efficiency and facilitate handling of the vehicle in a dense city environment, it should be as small as possible given its intended application. This downsizing trend impacts the size of the engine bay, where the air filter box has to be packed in a reduced space, still without increased pressure drop, reduced load capacity nor lower filtering efficiency. Due to its flexibility and reduced cost, CFD simulations play an important role in the optimization process of the filter design. Even though the air-flow through the filter box changes as the dust load increases, the current modeling framework seldom account for such time dependence. Volvo Car Corporation presents an industrial affordable model to solve the time-dependent dust load on filter elements and calculate the corresponding flow behavior over the life time of the air filter box.
Journal Article

Design Drivers of Energy-Efficient Transport Aircraft

2011-10-18
2011-01-2495
The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport aircraft. The sensitivities of energy efficiency to recent and forecast technology developments are also examined.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Technical Paper

Optimization of Gear Shifting and Torque Split for Improved Fuel Efficiency and Drivability of HEVs

2013-04-08
2013-01-1461
Decreasing fuel consumption and emissions in automobiles has been an active research topic in recent years. Vehicles with alternative powertrain systems, especially hybrid-electric vehicles (HEVs), have shown significant reduction in fuel consumption and emissions, and therefore have attracted many researchers to this field. The focus is usually on the development of optimal power management control methods. For parallel HEVs, the primary control variable is the torque split between the internal combustion engine and the electric motor. More advanced approaches also simultaneously search for the optimal gear number and engine on/off state, which can further reduce the fuel consumption but also complicate the problem. In the literature on HEVs, the emphasis is typically only on fuel efficiency and sometimes the emissions. The drivability of the vehicle is usually not considered during the optimization process.
Technical Paper

Future Fuels for DISI Engines: A Review on Oxygenated, Liquid Biofuels

2019-01-15
2019-01-0036
Global warming and climate change have led to a greater interest in the implementation of biofuels in internal combustion engines. In spark ignited engines, biofuels have been shown to improve efficiency and knock resistance while decreasing emissions of unburned hydrocarbons, carbon monoxide and particles. This study investigates the effect of biofuels on SI engine combustion through a graphical compilation of previously reported results. Experimental data from 88 articles were used to evaluate the trends of the addition of different biofuels in gasoline. Graphs illustrating engine performance, combustion phasing and emissions are presented in conjunction with data on the physiochemical properties of each biofuel component to understand the observed trends. Internal combustion engines have the ability to handle a wide variety of fuels resulting in a broad range of biofuel candidates.
Technical Paper

Optimizing Base Oil Viscosity Temperature Dependence For Power Cylinder Friction Reduction

2014-04-01
2014-01-1658
Lubricant viscosity along the engine cylinder liner varies by an order of magnitude due to local temperature variation and vaporization effects. Tremendous potential exists for fuel economy improvement by optimizing local viscosity variations for specific operating conditions. Methods for analytical estimation of friction and wear in the power-cylinder system are reviewed and used to quantify opportunities for improving mechanical efficiency and fuel economy through lubricant formulation tailored specifically to liner temperature distributions. Temperature dependent variations in kinematic viscosity, density, shear thinning, and lubricant composition are investigated. Models incorporating the modified Reynolds equation were used to estimate friction and wear under the top ring and piston skirt of a typical 11.0 liter diesel engine.
Technical Paper

Designing Thermoacoustic Engines for Automotive Exhaust Waste Heat Recovery

2021-04-06
2021-01-0209
Thermoacoustic engine has been proven to be a promising technology for automotive exhaust waste heat recovery to save fossil fuel and reduce emission thanks to its ability to convert heat into acoustic energy which, hence, can be harvested in useful electrical energy. In this paper, based on the practical thermodynamic parameters of the automotive exhaust gas, including mass flow rate and temperature, two traveling-wave thermoacoustic engines are designed and optimized for the typical heavy-duty and light-duty vehicles, respectively, to extract and reutilize their exhaust waste heat. Firstly, nonlinear thermoacoustic models for each component of a thermoacoustic engine are established in the frequency domain, by which any potential steady operating point of the engine is available.
Technical Paper

A Test Rig for Evaluating Thermal Cyclic Life and Effectiveness of Thermal Barrier Coatings inside Exhaust Manifolds

2019-04-02
2019-01-0929
Thermal Barrier Coatings (TBCs) may be used on the inner surfaces of exhaust manifolds in heavy-duty diesel engines to improve the fuel efficiency and prolong the life of the component. The coatings need to have a long thermal cyclic life and also be able to reduce the temperature in the substrate material. A lower temperature of the substrate material reduces the oxidation rate and has a positive influence on the thermo-mechanical fatigue life. A test rig for evaluating these properties for several different coatings simultaneously in the correct environment was developed and tested for two different TBCs and one oxidation-resistant coating. Exhausts were redirected from a diesel engine and led through a series of coated pipes. These pipes were thermally cycled by alternating the temperature of the exhausts. Initial damage in the form of cracks within the top coats of the TBCs was found after cycling 150 times between 50°C and 530°C.
Technical Paper

Performance Analysis of Volumetric Expanders in Heavy-Duty Truck Waste Heat Recovery

2019-12-19
2019-01-2266
With increasing demands to reduce fuel consumption and CO2 emissions, it is necessary to recover waste heat from modern Heavy Duty (HD) truck engines. Organic Rankine Cycle (ORC) has been acknowledged as one of the most effective systems for Waste Heat Recovery (WHR) due to its simplicity, reliability and improved overall efficiency. The expander and working fluid used in ORC WHR greatly impact the overall performance of an integrated engine and WHR system. This paper presents the effects of volumetric expanders on the ORC WHR system of a long haulage HD truck engine at a steady-state engine operating point chosen from a real-time road data. Performance of a long haulage HD truck engine is analyzed, based on the choice of three volumetric expanders for its WHR system, using their actual performance values. The expanders are: an oil-free open-drive scroll, a hermetic scroll and an axial piston expander with working fluids R123, R245fa and ethanol, respectively.
Journal Article

Effects of Boundary Layer and Local Volumetric Cells Refinements on Compressor Direct Noise Computation

2022-06-15
2022-01-0934
The use of turbochargers with downsized internal combustion engines improves road vehicles’ energy efficiency but introduces additional sound sources of strong acoustic annoyance on the turbocharger’s compressor side. In the present study, direct noise computations (DNC) are carried out on a passenger vehicle turbocharger compressor. The work focuses on assessing the influence of grid parameters on the acoustic predictions, to further advance the maturity of the acoustic modelling of such machines with complex three-dimensional features. The effect of the boundary layer mesh structure, and of the spatial resolution of the mesh, on the simulated acoustic signatures is investigated on detached eddy simulations (DES). Refinements in the core mesh are applied in areas of major acoustic production, to generate cells with sizes proportional to the local Taylor microscale values.
Journal Article

Effects of Ethanol Content on Gasohol PFI Engine Wide-Open-Throttle Operation

2009-06-15
2009-01-1907
The NOx emission and knock characteristics of a PFI engine operating on ethanol/gasoline mixtures were assessed at 1500 and 2000 rpm with λ =1 under Wide-Open-Throttle condition. There was no significant charge cooling due to fuel evaporation. The decrease in NOx emission and exhaust temperature could be explained by the change in adiabatic flame temperature of the mixture. The fuel knock resistance improved significantly with the gasohol so that ignition could be timed at a value much closer or at MBT timing. Changing from 0% to 100% ethanol in the fuel, this combustion phasing improvement led to a 20% increase in NIMEP and 8 percentage points in fuel conversion efficiency at 1500 rpm. At 2000 rpm, where knocking was less severe, the improvement was about half (10% increase in NIMEP and 4 percentage points in fuel conversion efficiency).
Technical Paper

A data driven approach for real-world vehicle energy consumption prediction

2024-04-09
2024-01-2870
Accurately predicting real-world vehicle energy consumption is essential for optimizing vehicle designs, enhancing energy efficiency, and developing effective energy management strategies. This paper presents a data-driven approach that utilizes machine learning techniques and a comprehensive dataset of vehicle parameters and environmental factors to create precise energy consumption prediction models. The methodology involves recording real-world vehicle data using data loggers to extract information from the CAN bus systems for ICE and hybrid electric, as well as hydrogen and battery fuel cell vehicles. Data cleaning and cycle-based analysis are employed to process the dataset for accurate energy consumption prediction. This includes cycle detection and analysis using methods from statistics and signal processing, and then pattern recognition based on these metrics.
X