Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Review of Diesel Emissions and Control

2010-04-12
2010-01-0301
This review summarizes the latest developments in diesel emissions regarding regulations, engines, NOx (nitrogen oxides) control, particulate matter (PM) reductions, and hydrocarbon (HC) and CO oxidation. Regulations are advancing with proposals for PN (particle number) regulations that require diesel particulate filters (DPFs) for Euro VI in 2013-14, and SULEV (super ultra low emission vehicle) fleet average light-duty (LD) emissions likely to be proposed in California for ~2017. CO₂ regulations will also impact diesel engines and emissions, probably long into the future. Engine technology is addressing these needs. Heavy-duty (HD) research engines show 90% lower NOx at the same PM or fuel consumption levels as a reference 2007 production engine. Work is starting on HD gasoline engines with promising results. In light duty (LD), engine downsizing is progressing and deNOx is emerging as a fuel savings strategy.
Journal Article

Low Cost LEV-III, Tier-III Emission Solutions with Particulate Control using Advanced Catalysts and Substrates

2016-04-05
2016-01-0925
A production calibrated GTDI 1.6L Ford Fusion was used to demonstrate low HC, CO, NOx, PM (particulate mass), and PN (particulate number) emissions using advanced catalyst technologies with newly developed high porosity substrates and coated GPFs (gasoline particulate filters). The exhaust system consisted of 1.2 liters of TWC (three way catalyst) in the close-coupled position, and 1.6L of coated GPF in the underfloor position. The catalysts were engine-aged on a dynamometer to simulate 150K miles of road aging. Results indicate that ULEV70 emissions can be achieved at ∼$40 of PGM, while also demonstrating PM tailpipe performance far below the proposed California Air Resources Board (CARB) LEV III limit of 1 mg/mi. Along with PM and PN analysis, exhaust system backpressure is also presented with various GPF designs.
Technical Paper

Effect of Cell Geometry on Emissions Performance of Ceramic Catalytic Converters

2002-03-04
2002-01-0354
More stringent emissions regulations, space limitations for catalytic converters in modern automotive applications, and new engine technologies constitute design challenges for today's engineers. In that context high cell density thinwall and ultrathinwall ceramic substrates have been designed into advanced catalytic converters. Whereas the majority of these substrates have a square cell geometry, a potential for further emissions improvement has been predicted for hexagonal cell structures. In order to verify these predictions, a ceramic substrate has been developed combining the features of high cell density, ultrathin cell walls, and hexagonal cell structure. Based on modeling data, the actual cell density and wall thickness of the hexagonal cell substrate will be defined. The performance of that substrate will be assessed by comparing experimental emissions results using two modern Volkswagen engines.
Technical Paper

Reduced Energy and Power Consumption for Electrically Heated Extruded Metal Converters

1993-03-01
930383
Improved designs of extruded metal electrically heated catalysts (EHC) in combination with a traditional converter achieved the California ultra-low emission vehicle (ULEV) standard utilizing 50% less electrical energy than previous prototypes. This energy reduction is largely achieved by reducing the mass of the EHC. In addition to energy reduction, the battery voltage is reduced from 24 volts to 12 volts, and the power is reduced from 12 kilowatts to 3 kilowatts. Also discussed is the impact EHC mass, EHC catalytic activity, and no EHC preheating has on non-methane hydrocarbon emissions, energy requirements, and power requirements.
Technical Paper

Design Considerations for a Ceramic Preconverter System

1994-03-01
940744
The preconverter is an essential element of exhaust gas treatment to help meet the tighter emission standards of TLEV and LEV levels. Its design must be chosen so as to meet the simultaneous requirements of compactness, faster light-off, low back pressure, high temperature durability and low cost. This paper presents design options for a ceramic substrate and durable package which lead to an optimum and cost-effective preconverter system. Preliminary data for high temperature physical durability of selected converter systems are presented. Performance parameters for light-off activity and back pressure are also computed and compared with those of standard substrates used in underbody application. Laboratory tests comprising of axial push-out test, high temperature vibration test, exhaust gas simulation test and the engine dynamometer test demonstrate the viability of ceramic preconverters for automotive application.
Technical Paper

Optimization of Extruded Electrically Heated Catalysts

1994-03-01
940468
Low mass extruded electrically heated catalysts (EHC) followed directly by light-off and main converters resulted in non-methane hydrocarbon emissions (NMHC) between .020 and .023 g/mi at power levels as low as 1 kw and energy levels as low as 4 whr. These results were achieved on a 1993, 2.2 liter vehicle. The success of this system is due to rapid heat up of the catalyzed surface areas of both the heater and light-off converter. The energy added to the exhaust from both the heater and the light-off is then efficiently transferred to the main converter. In addition, the impact of power and energy on NMHC levels was determined. The Ultra-Low Emissions Vehicle (ULEV) standard was also achieved with uncatalyzed heaters and on a 1990, 3.8 L vehicle. The new California Low Emission Vehicle (LEV) and Ultra Low Emission Vehicle (ULEV) standards require a significant reduction in tail pipe emissions compared to current standards.
Technical Paper

Aggregate Vehicle Emission Estimates for Evaluating Control Strategies

1994-03-01
940303
Currently, states that are out of compliance with the National Ambient Air Quality Standards must, according to the Clean Air Act Amendments of 1990 (CAAA), develop and implement control strategies that demonstrate specific degrees of reduction in emissions-with the degree of reduction depending upon the severity of the problem. One tool that has been developed to aid regulators in both deciding an appropriate course of action and to demonstrate the desired reductions in mobile emissions is EPA's Mobile 5a emission estimation model. In our study, Mobile 5a has been used to examine the effects of regulatory strategies, as applied to the Northeast United States, on vehicle emissions under worst-case ozone-forming conditions.
Technical Paper

Advances of Durability of Ceramic Converter Systems

1996-10-01
962372
Governing bodies world-wide are setting increasingly tighter emission standards to help improve air quality. US and Californian LEV/ULEV standards are pace setting, European Stage II legislation has just become effective. In Brazil, the upcoming 1997 standards are also demanding for tighter emission control. The monolithic ceramic honeycomb catalytic converter -for more than the past 20 years- has been a reliable key element in the automotive emission control systems. In order to help meet tightened emission regulation as well to satisfy even more stringent durability requirement, an advanced thinwall ceramic Celcor XT has been developed for increased geometric surface area and reduced backpressure. The product properties as well as FTP and ECE emission and durability test results are being described in this paper. Converter system durability is also determined by robust canning and mounting systems. A durable mounting concept, especially for preconverters, is being described.
Technical Paper

Evolution of Tailpipe Particulate Emissions from a GTDI Mild-Hybrid SUV with a Gasoline Particulate Filter

2021-04-06
2021-01-0582
The ceramic wall-flow filter has now been globally commercialized for aftertreatment systems in light-duty gasoline engine powered vehicles. This technology, known as the gasoline particulate filter (GPF), represents a durable solution for particulate emissions control. The goal of this study was to track the evolution of tailpipe particulate and gaseous emissions of a 4-cylinder gasoline turbocharged direct injected (GTDI) 2018 North American (NA) mild-hybrid light-duty SUV, from a fresh state to the 4,000-mile, EPA certification mileage level. For this purpose, a production TWC + GPF aftertreatment system designed for a China 6b-compliant variant of this test vehicle was retrofitted in place of the North American Tier 3 Bin 85 TWC-only system. Chassis dyno emissions testing was performed at predetermined mileage points with real-world, on-road driving conducted for the necessary mileage accumulation.
Technical Paper

Development of a Super-Light Substrate for LEV III/Tier3 Emission Regulation

2015-04-14
2015-01-1001
With the increasing number of automobiles, the worldwide problem of air pollution is becoming more serious. The necessity of reducing tail-pipe emissions is as high as ever, and in countries all over the world the regulations are becoming stricter. The emissions at times such as after engine cold start, when the three-way catalyst (TWC) has not warmed up, accounts for the majority of the emissions of these pollutants from vehicles. This is caused by the characteristic of the TWC that if a specific temperature is not exceeded, TWC cannot purify the emissions. In other words, if the catalyst could be warmed up at an early stage after engine start, this would provide a major contribution to reducing the emissions. Therefore, this research is focused on the substrate weight and investigated carrying out major weight reduction by making the porosity of the substrate larger than that of conventional products.
X