Refine Your Search

Topic

Search Results

Technical Paper

Thinwall Injection Molding for Instrument Panels

2001-03-05
2001-01-1272
As the global auto industry wrote the final chapter on its first century, we saw the average thickness of an automotive instrument panel drop from 3.0 mm-3.5 mm to 2.0 mm-2.3 mm, as found in the 1999 Volkswagen Jetta and Golf. By reducing the wall thickness of the instrument panel, Volkswagen started an industry trend: both OEMs and tiers are investigating technologies to produce parts that combine a lower cost-per-part via material optimization and cycle-time reduction with the superior performance of engineering thermoplastics. The goal is to produce parts that are positioned more competitively at every stage of the development cycle - from design, to manufacturing, to assembly, to “curb appeal” on the showroom floor. The key to this manufacturing and design “sweet spot” is a technology called thinwall - the molding of plastic parts from engineering thermoplastics with wall thicknesses thinner than conventional parts of similar geometry.
Technical Paper

Temperature Measurement Errors in Automotive Lighting

2001-03-05
2001-01-0859
This paper examines a variety of thermocouple and infrared measurement techniques as means of obtaining accurate and consistent temperature measurements within a headlamp system. While measuring temperature is straightforward in principle, in practice, these measurements are fraught with potential error. The paper summarizes a succession of experiments conducted at our Parts Design Center (formerly the Application Development Resource Center) in Pittsfield, MA. These experiments lead to the ability to accurately measure temperature at a given location within a lamp assembly. Using these studies and the resulting transfer functions as a foundation, a Design of Experiment (D.O.E.) is presented which explores the effect of a variety of headlamp design factors on the surface temperature of a headlamp reflector at a given location.
Technical Paper

Conductive Thermoplastic Resin for Electrostatically Painted Applications

1998-02-23
980983
The formulation of injection moldable thermoplastics with small loadings of graphite nanotubes provides sufficient conductivity in molded parts to allow for use in electrostatic painting applications. Normally, plastic parts need to be painted with a conductive primer prior to the electrostatic painting of base and clear coats. The use of conductive plastics eliminates the need for the priming step, and improves paint transfer efficiency and first pass yield. These elements provide obvious savings in materials and labor. What is less obvious, however, is the dramatic positive environmental impact that can occur through the reduction in emissions of volatile organic compounds (VOCs). Graphite nanotube technology provides advantages over other technologies such as conductive carbon black. In order to reach the percolation threshold for conductivity in carbon-black-containing resins, the loading of carbon black required tends to embrittle the polymer.
Technical Paper

Design & Development of a Prototype Gas-Assist-Molded Glovebox Door

1998-02-23
980963
The purpose of this paper is to discuss design methodology, manufacturing considerations, and testing proveout for a prototype gas-assist-molded, energy-absorbing, glovebox door program. The design used a single gas pin mounted in a multiple-gas-channel component and an internal gas manifold to form an efficient energy absorbing system. The end goal for the development program was to manufacture a glovebox door in a system that could meet the customer's targets for cost, surface appearance, and safety considerations without degrading function and fit. This paper will discuss the ability of a design methodology to predict actual component performance using engineering calculations, analytical tools, and prototype testing/molding during the development.
Technical Paper

Rationalizing Gas-Assist Injection Molding Processing Conditions

1995-02-01
950562
Gas-assist injection molding is a relatively new process. It is an extension of conventional injection molding and allows molders to make larger parts having projected areas or cross sectional geometries not previously possible using existing equipment. However, controlling the injection of the gas has been a concern. The plastics industry is attempting to establish logical techniques to set up and rationalize processing conditions for the method. Although gas injection equipment permits a number of adjustments, an optimum processing window must be established to provide control and repeatability of the process to mold consistent, acceptable parts. This paper describes a strategy and equipment for rationalizing and accurately controlling gas injection processing conditions that are applicable regardless of the type of molding machine or processing license a molder is using.
Technical Paper

Understanding the Mechanical Behavior of Threaded Fasteners in Thermoplastic Bosses Under Load

1996-02-01
960293
Because it is common to attach plastic parts to other plastic, metal, or ceramic assemblies with mechanical fasteners that are often stronger and stiffer than the plastic with which they are mated, it is important to be able to predict the retention of the fastener in the polymeric component. The ability to predict this information allows engineers to more accurately estimate length of part service life. A study was initiated to understand the behavior of threaded fasteners in bosses molded from engineering thermoplastic resins. The study examined fastening dynamics during and after insertion of the fastener and the effects of friction on the subsequent performance of the resin. Tests were conducted at ambient temperatures over a range of torques and loads using several fixtures that were specially designed for the study. Materials evaluated include modified-polyphenylene ether (M-PPE), polyetherimide (PEI), polybutylene terephthalate (PBT), and polycarbonate (PC).
Technical Paper

Optimizing Parts and Systems Integration with Engineering Thermoplastics to Meet the Challenges of Future Automotive Door Systems

1997-02-24
970144
As automakers struggle to meet often conflicting safety, weight, styling, and performance requirements, engineering thermoplastics (ETPs) are making increasing inroads into applications that once were the exclusive domain of metals, glass, and thermosets. A good example of this is in the door systems area, where the performance, design flexibility, aesthetics, parts integration, and lower specific gravity offered by ETPs are allowing highly integrated and efficient modules to be created that, in turn, increase assembly efficiency and reduce mass, part count, warranty issues, and systems costs. This paper will use several case studies on innovative door hardware modules and door panels to illustrate the advantages offered by this versatile class of engineering materials.
Technical Paper

Why Thermoplastic Door Hardware Systems Make Economic Sense Now

1997-02-24
970143
Engineering thermoplastics are widely used in a variety of automotive components systems because of their excellent balance of mechanical performance, design flexibility, aesthetics, parts integration, and low specific gravity. This combination of properties allows for the creation of highly integrated modules, which can increase assembly efficiency and reduce mass, part count, warranty and ergonomic issues, and systems costs. As a result, the use of engineering thermoplastic materials can enhance market competitiveness at a time of increased global competition. To evaluate the economic advantages of polymers in a specific vehicle system, a design for assembly (DFA) case study was conducted with the goal of determining the variable system cost case for a generic thermoplastic door module system vs. conventional-build door systems based on assembly savings gains. This paper will describe the study and show the results achieved.
Technical Paper

Trends Driving Design and Materials Changes in the Instrument Panel System

1997-02-24
970445
The instrument panel (IP) is one of the largest, most complex, and visible components of the vehicle interior, and like most other major systems in passenger cars and light trucks, it has undergone considerable aesthetic and functional changes over the past decade. This is because a number of design, engineering, and manufacturing trends have been driving modifications in both the role of these systems and the materials used to construct them since the mid- '80s. This paper will trace the recent evolution of IP systems in terms of the trends affecting both design and materials usage. Specific commercial examples will be used to illustrate these changes.
Technical Paper

First One-Piece, Injection-Molded Thermoplastic Front-Bumper System for a Light Truck

1998-02-23
980107
The first single-piece, injection-molded, thermoplastic, front bumper for a light truck provides improved performance and reduced cost for the 1997 MY Explorer® Ltd. and 1988 MY Mountaineer® truck from Ford Motor Company. Additionally, the system provides improved impact performance, including the ability to pass 5.6 km/hr barrier impact tests without damage. Further, the advanced, 1-piece design integrates fascia attachments, reducing assembly time, and weighs 8.76 kg/bumper less than a baseline steel design. The complete system provides a cost savings vs. extruded aluminum and is competitive with steel bumpers.
Technical Paper

Consistency of Thermoplastic Bumper Beam Impact Performance

1998-02-23
980113
This paper will address several critical aspects of bumper system performance, including vehicle damage protection and crash-severity sensing considerations, energy-absorption capacity and efficiency, and low-speed impact consistency and sensitivity to temperature changes. The objective is to help engineers and designers establish a realistic perspective of the capability of the various technologies based on actual test performance. The scope of the evaluation will include a comparison of several bumper-beam material constructions when subjected to a 16-km/hr swinging barrier impact over a range of temperatures the bumper could see in service (-30 to 60C).
Technical Paper

Correlation of Finite-Element Analysis to Free-Motion Head-Form Testing for FMVSS 201U Impact Legislation

1997-02-24
970163
Automotive engineers and designers are working to develop pillar-trim concepts that will comply with the upper interior head-impact legislation, FMVSS 201U. However, initial development cycles have been long and repetitive. A typical program consists of concept development, tool fabrication, prototype molding, and impact testing. Test results invariably lead to tool revisions, followed by further prototypes, and still more impact testing. The cycle is repeated until satisfactory parts are developed - a process which is long (sometimes in excess of 1 year) and extremely labor intensive (and therefore expensive). Fortunately, the use of finite-element analysis (FEA) can greatly reduce the concept-to-validation time by incorporating much of the prototype and impact evaluations into computer simulations. This paper describes both the correlation and validation of an FEA-based program to physical free-motion head-form testing and the predictive value of this work.
Technical Paper

CAE Processing Analysis of Plastic Fenders

1992-09-01
922116
Engineering thermoplastics are being used increasingly in automotive exterior body applications; most of these applications require that the panels be painted “on line” with the rest of the car body at relatively high temperatures. The high temperatures associated with the painting/conditioning of the car have been shown to cause dimensional stability problems on automotive fenders molded from NORYL GTX®. This paper contains the results of an extensive FEA investigation targeted at determining what factors cause dimensional problems in fenders exposed to high heat. The ABAQUS FEA software was used to perform computer simulations of the process and the C-PACK/W software was used to determine molded in stress values.
Technical Paper

Engineering Development and Performance of an Integrated Structural Instrument Panel Assembly and Heater-Ventilation-Air-Conditioning Assembly

2000-03-06
2000-01-0416
Textron Automotive Trim, Valeo Climate Control, and Torrington Research Company, with assistance from GE Plastics, have developed an integrated instrument panel system to meet ever-increasing industry targets for: Investment and piece-cost reduction; Mass/weight savings; Quality and performance improvements; Packaging and space availability; Government regulation levels; and Innovative technology. This system, developed through feedback with the DaimlerChrysler Corporation, combines the distinctive requirements of the instrument panel (IP) with the heater-ventilation-air-conditioning (HVAC) assembly. Implementing development disciplines such as benchmarking, brainstorming, and force ranking, a number of concepts were generated and evaluated. Using a current-production, small, multi-purpose vehicle environment, a mainstream concept was designed and engineered.
Technical Paper

Application of a MIC Metallic Flake ASA/PC Weatherable Resin Predictive Engineering Package

2006-04-03
2006-01-0135
The automotive industry continues to strive for mold-in-color (MIC) solutions that can provide metallic flake appearances. These MIC solutions can offer a substantial cost out opportunity while retaining a balance of weathering performance and physical properties. This paper discusses a predictive engineering package used to hide, minimize and eliminate flow lines. Material requirements and the methods used to evaluate flowline reduction and placement for visual inspection criteria are detailed. The Nissan Quest® luggage-rack covers are used to illustrate this application. The paper also explores how evolving predictive packages offer expanding possibilities.
Technical Paper

Thermoformed Soft Instrument Panel

2003-03-03
2003-01-1171
The automotive industry is continually striving for opportunities to take additional cost and mass out of vehicle systems. Large parts such as an Instrument Panel retainer are good candidates because a small percent reduction in mass can translate into a significant material mass savings. Multiple requirements for a soft instrument panel including safety, stiffness, adhesion, etc. can make these savings difficult to achieve. This paper will describe how a new material and process development for the fabrication of a soft instrument panel can produce 50% weight savings with a 20% cost reduction potential. In addition, this new technology exhibits improved performance over existing materials during safety testing.
Technical Paper

A Low Cost, Lightweight Solution for Soft Seamless Airbag Systems

2004-03-08
2004-01-1485
OEM and Tier One integrated suppliers are in constant search of cockpit system components that reduce the overall number of breaks across smooth surfaces. Traditionally, soft instrument panels with seamless airbag systems have required a separate airbag door and a tether or steel hinge mechanism to secure the door during a deployment. In addition, a scoring operation is necessary to ensure predictable, repeatable deployment characteristics. The purpose of this paper is to demonstrate the development and performance of a cost-effective soft instrument panel with a seamless airbag door that results in a reduced number of parts and a highly efficient manufacturing process. Because of the unique characteristics of this material, a cost-effective, lightweight solution to meet both styling requirements, as well as safety and performance criteria, can be attained.
Technical Paper

Use of Parametric Modeling in the Development of Energy Absorber Applications

2002-03-04
2002-01-1226
Automotive styling and performance trends continue to challenge engineers to develop cost effective bumper systems that can provide efficient energy absorption and also fit within reduced package spaces. Through a combination of material properties and design, injection-molded engineering thermoplastic (ETP) energy absorption systems using polycarbonate/polybutylene terephthalate (PC/PBT) alloys have been shown to promote faster loading and superior energy absorption efficiency than conventional foam systems. This allows the ETP system to provide the required impact protection within a smaller package space. In order to make optimal use of this efficiency, the reinforcing beam and energy absorber (EA) must be considered together as an energy management system. This paper describes the development of a predictive tool created to simplify and shorten the process of engineering efficient and cost effective beam/EA energy management systems.
Technical Paper

Lightweight Thermoplastic Composite Throttle Bodies for Car and Truck Applications

2001-03-05
2001-01-1140
The drive to reduce weight, simplify assembly, and cut total system cost in today's vehicles is relentless. Replacing metal systems with thermoplastics has been of considerable interest in the engineering community. The current generations of engineering thermoplastic resins are enabling the use of plastic systems in demanding underhood applications. Technical data and discussion regarding the materials, design, molding, and assembly of lightweight composite throttle bodies will be presented in this paper. Comparisons with machined aluminum throttle housings are drawn to establish a baseline with the throttle body housing component that is most common in production today. Design flexibility and process simplification are some of the approaches highlighted. Much of the technical information provided in the paper applies to both cable driven mechanical throttle bodies as well as electronic throttle bodies under development.
Technical Paper

Predicting the Bumper System Response of Engineering Thermoplastic Energy Absorbers with Steel Beams

2002-03-04
2002-01-1228
An efficient energy absorber (EA) will absorb impact energy through a combination of elastic and plastic deformation. However, the EA is typically coupled with a steel reinforcing beam, which can also elastically and plastically deform during an impact event. In order to design and optimize an EA/Beam system that will meet the specified vehicle impact requirements, the response of the entire assembly must be accurately predicted. This paper will describe a finite element procedure and material model that can be used to predict the impact response of a bumper system composed of an injection molded thermoplastic energy absorber attached to a steel beam. The first step in the process was to identify the critical material, geometric, and boundary condition parameters involved in the EA and Beam individually. Next, the two models were combined to create the system model. Actual test results for 8km/hr.
X