Refine Your Search

Topic

Search Results

Technical Paper

Consistency of Thermoplastic Bumper Beam Impact Performance

1998-02-23
980113
This paper will address several critical aspects of bumper system performance, including vehicle damage protection and crash-severity sensing considerations, energy-absorption capacity and efficiency, and low-speed impact consistency and sensitivity to temperature changes. The objective is to help engineers and designers establish a realistic perspective of the capability of the various technologies based on actual test performance. The scope of the evaluation will include a comparison of several bumper-beam material constructions when subjected to a 16-km/hr swinging barrier impact over a range of temperatures the bumper could see in service (-30 to 60C).
Technical Paper

First One-Piece, Injection-Molded Thermoplastic Front-Bumper System for a Light Truck

1998-02-23
980107
The first single-piece, injection-molded, thermoplastic, front bumper for a light truck provides improved performance and reduced cost for the 1997 MY Explorer® Ltd. and 1988 MY Mountaineer® truck from Ford Motor Company. Additionally, the system provides improved impact performance, including the ability to pass 5.6 km/hr barrier impact tests without damage. Further, the advanced, 1-piece design integrates fascia attachments, reducing assembly time, and weighs 8.76 kg/bumper less than a baseline steel design. The complete system provides a cost savings vs. extruded aluminum and is competitive with steel bumpers.
Technical Paper

Abusive Testing of Thermoplastic vs. Steel Bumpers Systems

1998-02-23
980106
Over the last decade, on small- and medium-size passenger cars, a new class of front bumper - injection or blow molded from engineering thermoplastics - has been put into production use. These bumper systems provide full 8-km/hr federal pendulum and flat-barrier impact protection, as well as angled barrier protection. Thermoplastic bumpers, offering weight, cost, and manufacturing advantages over conventional steel bumper systems, also provide high surface finish and styling enhancements. However, there remain questions about the durability and engineering applicability of thermoplastic bumper systems to heavier vehicles. This paper presents results of a preliminary study that examines the durability of thermoplastic bumpers drawn from production lots for much lighter compact, and mid-size passenger cars against baseline steel bumper systems currently used on full-size pickup truck and sport-utility vehicles (SUVs). Bumpers were subjected to U.S.
Technical Paper

Design & Development of a Prototype Gas-Assist-Molded Glovebox Door

1998-02-23
980963
The purpose of this paper is to discuss design methodology, manufacturing considerations, and testing proveout for a prototype gas-assist-molded, energy-absorbing, glovebox door program. The design used a single gas pin mounted in a multiple-gas-channel component and an internal gas manifold to form an efficient energy absorbing system. The end goal for the development program was to manufacture a glovebox door in a system that could meet the customer's targets for cost, surface appearance, and safety considerations without degrading function and fit. This paper will discuss the ability of a design methodology to predict actual component performance using engineering calculations, analytical tools, and prototype testing/molding during the development.
Technical Paper

Conductive Thermoplastic Resin for Electrostatically Painted Applications

1998-02-23
980983
The formulation of injection moldable thermoplastics with small loadings of graphite nanotubes provides sufficient conductivity in molded parts to allow for use in electrostatic painting applications. Normally, plastic parts need to be painted with a conductive primer prior to the electrostatic painting of base and clear coats. The use of conductive plastics eliminates the need for the priming step, and improves paint transfer efficiency and first pass yield. These elements provide obvious savings in materials and labor. What is less obvious, however, is the dramatic positive environmental impact that can occur through the reduction in emissions of volatile organic compounds (VOCs). Graphite nanotube technology provides advantages over other technologies such as conductive carbon black. In order to reach the percolation threshold for conductivity in carbon-black-containing resins, the loading of carbon black required tends to embrittle the polymer.
Technical Paper

Field Performance and Repair of Thermoplastic Exterior Body Panel Systems

1990-02-01
900291
Thermoplastic body panels are emerging in the industry as automotive manufacturers seek to design for advanced aerodynamic styling, lower weight, and cost effective vehicles. To best exhibit the advantages of GE thermoplastic resins in these applications, an extensive study has been completed to demonstrate the impact performance of thermoplastic body panels in the field based on the current success with the Buick LeSabre T-Type, Buick Reatta, and the Cadillac Deville and Fleetwood models using NORYL GTX® 910 resin fenders. This study provides a “real life” scenario of the advantages of thermoplastics compared to steel in body panel applications.
Technical Paper

Prototype Design and Testing of a Thermoplastic Steering Wheel Armature

2007-04-16
2007-01-1218
Basic automotive steering wheel armature design has been largely unchanged for years. A cast aluminum or magnesium armature is typically used to provide stiffness and strength with an overmolded polyurethane giving shape and occupant protection. A prototype steering wheel armature made from a unique recyclable thermoplastic eliminates the casting while meeting the same stiffness, impact, and performance criteria needed for the automotive market. It also opens new avenues for styling differentiation and flexibility. Prototype parts, manufacturing, and testing results will be covered.
Technical Paper

Temperature Measurement Errors in Automotive Lighting

2001-03-05
2001-01-0859
This paper examines a variety of thermocouple and infrared measurement techniques as means of obtaining accurate and consistent temperature measurements within a headlamp system. While measuring temperature is straightforward in principle, in practice, these measurements are fraught with potential error. The paper summarizes a succession of experiments conducted at our Parts Design Center (formerly the Application Development Resource Center) in Pittsfield, MA. These experiments lead to the ability to accurately measure temperature at a given location within a lamp assembly. Using these studies and the resulting transfer functions as a foundation, a Design of Experiment (D.O.E.) is presented which explores the effect of a variety of headlamp design factors on the surface temperature of a headlamp reflector at a given location.
Technical Paper

Lightweight Thermoplastic Composite Throttle Bodies for Car and Truck Applications

2001-03-05
2001-01-1140
The drive to reduce weight, simplify assembly, and cut total system cost in today's vehicles is relentless. Replacing metal systems with thermoplastics has been of considerable interest in the engineering community. The current generations of engineering thermoplastic resins are enabling the use of plastic systems in demanding underhood applications. Technical data and discussion regarding the materials, design, molding, and assembly of lightweight composite throttle bodies will be presented in this paper. Comparisons with machined aluminum throttle housings are drawn to establish a baseline with the throttle body housing component that is most common in production today. Design flexibility and process simplification are some of the approaches highlighted. Much of the technical information provided in the paper applies to both cable driven mechanical throttle bodies as well as electronic throttle bodies under development.
Technical Paper

Thinwall Injection Molding for Instrument Panels

2001-03-05
2001-01-1272
As the global auto industry wrote the final chapter on its first century, we saw the average thickness of an automotive instrument panel drop from 3.0 mm-3.5 mm to 2.0 mm-2.3 mm, as found in the 1999 Volkswagen Jetta and Golf. By reducing the wall thickness of the instrument panel, Volkswagen started an industry trend: both OEMs and tiers are investigating technologies to produce parts that combine a lower cost-per-part via material optimization and cycle-time reduction with the superior performance of engineering thermoplastics. The goal is to produce parts that are positioned more competitively at every stage of the development cycle - from design, to manufacturing, to assembly, to “curb appeal” on the showroom floor. The key to this manufacturing and design “sweet spot” is a technology called thinwall - the molding of plastic parts from engineering thermoplastics with wall thicknesses thinner than conventional parts of similar geometry.
Technical Paper

A Low Cost, Lightweight Solution for Soft Seamless Airbag Systems

2004-03-08
2004-01-1485
OEM and Tier One integrated suppliers are in constant search of cockpit system components that reduce the overall number of breaks across smooth surfaces. Traditionally, soft instrument panels with seamless airbag systems have required a separate airbag door and a tether or steel hinge mechanism to secure the door during a deployment. In addition, a scoring operation is necessary to ensure predictable, repeatable deployment characteristics. The purpose of this paper is to demonstrate the development and performance of a cost-effective soft instrument panel with a seamless airbag door that results in a reduced number of parts and a highly efficient manufacturing process. Because of the unique characteristics of this material, a cost-effective, lightweight solution to meet both styling requirements, as well as safety and performance criteria, can be attained.
Technical Paper

Use of Parametric Modeling in the Development of Energy Absorber Applications

2002-03-04
2002-01-1226
Automotive styling and performance trends continue to challenge engineers to develop cost effective bumper systems that can provide efficient energy absorption and also fit within reduced package spaces. Through a combination of material properties and design, injection-molded engineering thermoplastic (ETP) energy absorption systems using polycarbonate/polybutylene terephthalate (PC/PBT) alloys have been shown to promote faster loading and superior energy absorption efficiency than conventional foam systems. This allows the ETP system to provide the required impact protection within a smaller package space. In order to make optimal use of this efficiency, the reinforcing beam and energy absorber (EA) must be considered together as an energy management system. This paper describes the development of a predictive tool created to simplify and shorten the process of engineering efficient and cost effective beam/EA energy management systems.
Technical Paper

Conductive Plastics Leading Fuel Door Technology

2002-03-04
2002-01-0278
This paper will discuss, compare, and contrast current materials, designs, and manufacturing options for fuel filler doors. Also, it will explore the advantages of using conductive thermoplastic substrates over other materials that are commonly used in the fuel filler door market today. At the outset, the paper will discuss the differences between traditional steel fuel filler doors, which use an on-line painting process, and fuel filler doors that use a conductive thermoplastic substrate and require an in-line or off-line painting process. After reviewing the process, this paper will discuss material options and current technology. Here, we will highlight key drivers to thermoplastics acceptance, and look at the cost saving opportunities presented by the inline paint process option using a conductive thermoplastic resin, as well as benefits gained in quality control, component storage and coordination.
Technical Paper

Two-Shot and Overmolding Technology for Automotive Applications Using Engineering Thermoplastics

2002-03-04
2002-01-0274
There are a multitude of opportunities to utilize two-shot or overmolding technology in the automotive industry. Two-shot or overmolding a thermoplastic elastomer onto a rigid substrate can produce visually appealing, high quality parts. In addition, use of this technology can offer the molder significant reductions in labor and floor space consumption as well as a reduction in system cost. Traditionally, two-shot applications were limited to olefinbased TPE's and substrates, which often restricted rigidity, structure and gloss levels. With the development of thermoplastic elastomers that bond to engineering thermoplastics, two-shot molding can now produce parts that require higher heat, higher gloss and greater structural rigidity. This paper will outline engineering thermoplastics that bond with these new elastomers, discuss potential applications, and review circumstances that offer the best opportunity to call upon the advantages of two-shot and overmolding technology.
Technical Paper

Thermoformed Soft Instrument Panel

2003-03-03
2003-01-1171
The automotive industry is continually striving for opportunities to take additional cost and mass out of vehicle systems. Large parts such as an Instrument Panel retainer are good candidates because a small percent reduction in mass can translate into a significant material mass savings. Multiple requirements for a soft instrument panel including safety, stiffness, adhesion, etc. can make these savings difficult to achieve. This paper will describe how a new material and process development for the fabrication of a soft instrument panel can produce 50% weight savings with a 20% cost reduction potential. In addition, this new technology exhibits improved performance over existing materials during safety testing.
Technical Paper

Application of a MIC Metallic Flake ASA/PC Weatherable Resin Predictive Engineering Package

2006-04-03
2006-01-0135
The automotive industry continues to strive for mold-in-color (MIC) solutions that can provide metallic flake appearances. These MIC solutions can offer a substantial cost out opportunity while retaining a balance of weathering performance and physical properties. This paper discusses a predictive engineering package used to hide, minimize and eliminate flow lines. Material requirements and the methods used to evaluate flowline reduction and placement for visual inspection criteria are detailed. The Nissan Quest® luggage-rack covers are used to illustrate this application. The paper also explores how evolving predictive packages offer expanding possibilities.
Technical Paper

CAE Processing Analysis of Plastic Fenders

1992-09-01
922116
Engineering thermoplastics are being used increasingly in automotive exterior body applications; most of these applications require that the panels be painted “on line” with the rest of the car body at relatively high temperatures. The high temperatures associated with the painting/conditioning of the car have been shown to cause dimensional stability problems on automotive fenders molded from NORYL GTX®. This paper contains the results of an extensive FEA investigation targeted at determining what factors cause dimensional problems in fenders exposed to high heat. The ABAQUS FEA software was used to perform computer simulations of the process and the C-PACK/W software was used to determine molded in stress values.
Technical Paper

Rationalizing Gas-Assist Injection Molding Processing Conditions

1995-02-01
950562
Gas-assist injection molding is a relatively new process. It is an extension of conventional injection molding and allows molders to make larger parts having projected areas or cross sectional geometries not previously possible using existing equipment. However, controlling the injection of the gas has been a concern. The plastics industry is attempting to establish logical techniques to set up and rationalize processing conditions for the method. Although gas injection equipment permits a number of adjustments, an optimum processing window must be established to provide control and repeatability of the process to mold consistent, acceptable parts. This paper describes a strategy and equipment for rationalizing and accurately controlling gas injection processing conditions that are applicable regardless of the type of molding machine or processing license a molder is using.
Technical Paper

Understanding the Mechanical Behavior of Threaded Fasteners in Thermoplastic Bosses Under Load

1996-02-01
960293
Because it is common to attach plastic parts to other plastic, metal, or ceramic assemblies with mechanical fasteners that are often stronger and stiffer than the plastic with which they are mated, it is important to be able to predict the retention of the fastener in the polymeric component. The ability to predict this information allows engineers to more accurately estimate length of part service life. A study was initiated to understand the behavior of threaded fasteners in bosses molded from engineering thermoplastic resins. The study examined fastening dynamics during and after insertion of the fastener and the effects of friction on the subsequent performance of the resin. Tests were conducted at ambient temperatures over a range of torques and loads using several fixtures that were specially designed for the study. Materials evaluated include modified-polyphenylene ether (M-PPE), polyetherimide (PEI), polybutylene terephthalate (PBT), and polycarbonate (PC).
Technical Paper

Development of a Blow Molded, Thermoplastic Front Bumper System Offering Angled Barrier Protection

1997-02-24
970486
A new front bumper, blow molded from an engineering thermoplastic, is being used to provide full 8 km/h federal pendulum and flat-barrier impact protection, as well as angled barrier protection on a small passenger car. The low intrusion bumper is compatible with the vehicle's single-sensor airbag system and offers a 5.8 kg mass savings compared with competitive steel/foam systems. This paper will describe the design and development of the bumper system and the results achieved during testing.
X