Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Aerodynamic Enablers Review for Automotive Applications

2016-10-25
2016-36-0203
Automakers are seeking more efficient and green vehicles projects in terms of fuel consumption and CO2 emissions. Several factors are directly related to the performance and one of the most important is the aerodynamics. Cars with smooth geometries and transitions are expected to have a better aerodynamic behavior compared with the ones with rough geometries. Regardless the vehicle geometry changes, another way to improve the aerodynamics is by adding new parts, in order to improve the drag coefficient of the car. Most of the time, these parts are added but the functionality is not well defined. The main objective of this work is to identify, explain the way it should work and some applications of additional aeroparts. Those parts could be assembled in a vehicle in order to improve the drag coefficient, have a better fuel economy and lower emissions rate.
Technical Paper

Thermal Comfort Analysis for Passengers Inside a Vehicular Cabin

2016-10-25
2016-36-0197
The theory related to the thermal comfort of a human being is described in this article. It is not technically and economically feasible to provide optimal thermal comfort to a human being. The air temperature inside the vehicles is inhomogeneous mainly due to the ventilation system and to solar heat flux. The thermal stratification of air that results in difference of heat flux at the human body may cause thermal discomfort. In this case, it is important to quantify the degree of discomfort, which can be represented by the Predicted Mean Vote and Predicted Percentage Dissatisfied indices. This study intends to determine the thermal comfort for a human being inside vehicular cabins considering just the ventilation system with the same ambient temperature. A cabin of a vehicle is virtually reproduced in FLUENT® and the methodology of thermal comfort, based on previous works from the literature, is developed in Matlab 2010a and applied in this simulation.
Technical Paper

Aerodynamic Shape Improvement for Driver Side View Mirror of Hatchback Vehicle using Adjoint Optimization Method

2015-09-22
2015-36-0156
Nowadays, one of the most important roles in vehicle development is the aerodynamic, which aims efficiency on fuel consumption and leads to a green technology. Several initiatives around the world are regulating emissions and efficiency of vehicles such as EURO for European Marketing and the INOVAR Project to be implemented in Brazil on 2017. Thus, this study intend to perform an optimization to minimize the drag force of a hatchback vehicle. The main goal of this work is demonstrate the potential of optimization techniques to provide an aerodynamic shape improvement for the driver side outside rear view mirror of a hatchback vehicle. The optimization solver used in this work is the Adjoint Solver, which makes shape sensitivity analysis and mesh/volume morphing. The study was conducted using CFD simulations to reduce the drag force of current production hatchback vehicle previously validated and correlated in wind tunnel test.
Technical Paper

Windows Opening Influence on the Drag Coefficient of a Hatchback Vehicle

2015-09-22
2015-36-0158
Aerodynamics plays a key role in nowadays vehicle development, aiming efficiency on fuel consumption, which leads to a green technology. Several initiatives around the world are regulating emissions and efficiency of vehicles such as EURO for European Marketing and the INOVAR Auto Project to be implemented in Brazil on 2017. In order to meet requirements in terms of performance, especially on aerodynamics, automakers are focusing on aero-efficient exterior designs and also adding deflectors, covers, active spoilers and several other features to meet the drag coefficient. Usually, the aerodynamics properties of a vehicle are measured in both CFD simulations and wind tunnels, which provide controlled conditions for the test that could be easily reproduced. During the real operations conditions, external factors can affect the flow over the vehicle such as cross wind in open highways.
X