Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Improving Vehicle-Trailer System Dynamic Stability through Damper Tuning

2011-04-12
2011-01-0978
There are generally two types of directional instability that are associated with a vehicle/trailer combination system. The first is typically referred to as static or divergent instability (jack-knifing), which is a common cause of highway accidents. The second can be called dynamic or oscillatory instability (“snaking” or “fish-tailing”). This type of oscillation occurs due to inherently low system damping at higher speeds [1]. It is sensitive to system parameters and operating conditions and may be excited by various disturbances, such as side wind or abrupt steering inputs. Controlling trailer yaw oscillation can be challenging, especially in markets where small passenger cars are commonly used to tow relatively massive trailers at highway speeds with low hitch loads. This study focuses on the second of the two aforementioned types of instability - dynamic or oscillatory instability.
Technical Paper

A Rough Road Ride Simulation Assessment with Flexible Vehicle Body

2014-04-01
2014-01-0112
A rough road ride assessment provides an insightful evaluation of vehicle responses beyond the frequency range of suspension or steering modes. This is when body structure influence on the vehicle performance can be detected by vehicle occupants. In this paper, a rough road is used to evaluate vehicle ride performance and multi-body simulation (MBS) models are developed along with finite-element (FE) representations of the vehicle body and structure. To produce high fidelity simulation results in the frequency range of interest, various vehicle subsystem modeling contents are examined. A case study of a vehicle model with two different structures is provided. Time histories and frequency based analyses are used to obtain insights into the effects of body structure on vehicle responses. Finally, two metrics (‘Isolation’ and ‘Shake’) are used to distinguish the vehicle ride performance.
Journal Article

Investigating and Improving Vehicle Transient Handling Performance

2011-04-12
2011-01-0987
Steady-state handling design targets are generally defined in the design of suspension and steering systems, which are achieved through kinematic and compliance analysis. It has been found that some vehicles that meet all steady-state handling design targets do not necessarily perform well in subjective evaluations by experts or delight customers in the marketplace. The vehicles that customer find desirable exhibit the desired transient handling behavior, which is what the drivers experience for a majority of the driving time. It is therefore necessary to understand how to evaluate, and most importantly, how to design and tune the chassis for the desired transient handling behavior. In this study, the key mechanisms associated with transient handling performance are presented. The appropriate handling maneuvers are determined through which vehicle transient behavior can be evaluated. The proper response channels to monitor and measure are selected.
X