Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Detection of Urea Injection System Faults for SCR Systems

2012-04-16
2012-01-0431
The urea injection is a key function in Urea-SCR NOx reduction system. As the tailpipe NOx emission standard becomes increasingly stringent, it is critical to diagnose the injection faults in order to guarantee the SCR DeNox functionality and performance. Particularly, a blocked injector may cause under-dosing of urea thus reduced DeNox functionality. Monitoring urea injection rate is one of the efficient methods for injection fault diagnosis. However, direct measurement of the urea mass flow is not feasible due to its high cost. This paper presents methods that are promising for detecting and isolating faults in urea injection by processing certain actuator signal and existing sensory measurements, e.g., the injector Pulse Amplitude Modulated (PAM) command and the pressure of the urea delivery line. No additional dedicated sensor is required. Three methods are discussed to detect urea injection system faults.
Technical Paper

Model-Based Analysis and Optimization of Turbocharged Diesel Engines with a Variable Geometry Compressor and Turbine System

2012-04-16
2012-01-0716
In the last few years, the application of downsizing and turbocharging to internal combustion engines has considerably increased due to the proven potential of this technology to increase engine efficiency. Variable geometry turbines have been largely adopted to optimize the exhaust energy recovery over a large operating range. Two-stage turbocharger systems have also been studied as a solution to improve engine low-end torque and efficiency, with the first units currently available on the market. However, the compressor technology is today still based on fixed geometry machines, which are sized to efficiently operate at the maximum air flow and therefore lead to poor efficiency values at low air flow conditions. Furthermore, the surge limits prevents the full capabilities of VGT systems to increase the boosting at low engine speed.
Journal Article

Design of Engine-Out Virtual NOx Sensor Using Neural Networks and Dynamic System Identification

2011-04-12
2011-01-0694
Fuel economy improvement and stringent emission regulations worldwide require advanced air charging and combustion technologies, such as low temperature combustion, PCCI or HCCI combustion. Furthermore, NOx aftertreatment systems, like Selective Catalyst Reduction (SCR) or lean NOx trap (LNT), are needed to reduce vehicle tailpipe emissions. The information on engine-out NOx emissions is essential for engine combustion optimization, for engine and aftertreatment system development, especially for those involving combustion optimization, system integration, control strategies, and for on-board diagnosis (OBD). A physical NOx sensor involves additional cost and requires on-board diagnostic algorithms to monitor the performance of the NOx sensor.
X