Refine Your Search

Topic

Search Results

Technical Paper

Effects of Fretting Corrosion on Lift Glass

2011-04-12
2011-01-1434
The electrical architecture design of a rear back glass defrost grid system encompasses many critical criteria that must be integrated into the design. For example, the defrost clip location and interface to the glass must meet all vehicle performance requirements. If the defrost clip to the glass interface is not resistant to vibration and relative movement, detachment and loss of function can occur. This paper describes a back glass defrost clip with a solder joint that is robust to manufacturing variations and customer usage conditions. A designed experiment using Design for Six Sigma methodologies was performed to understand the effects of the attachment interface to the electrical wiring pigtail, and parameters that affect performance. The working constraints, testing set up, validation, and root cause investigation of the clip detachment phenomenon is covered in this paper.
Technical Paper

Automotive AC System Oil Migration HFO-1234yf Vs. R134a

2011-04-12
2011-01-1173
1 As global automotive manufacturers prepare for the introduction of HFO-1234yf as the low Global Warming Potential (GWP) refrigerant solution in Europe and North America concerns over compressor durability due to oil migration still remain. This preliminary study evaluates several different variables that affect oil migration. Several compressor suppliers each having their own unique oil formulation for HFO-1234yf were included. Comparisons between vehicle tests and various accelerated lab test methods are made. In R134a automotive system the thresholds that cause compressor warranty are well understood. This study will compare AC systems running with HFO-1234yf at the same time identical systems with R134a are run to understand the relative effect of HFO-1234yf versus R134a.
Technical Paper

Hood Slam Process Automator

2011-04-12
2011-01-1066
This paper deals with the development of a Hood Slam Process Automator (PA) to automate the pre-processing tasks of the virtual slam assessment with non-linear Nastran Transient Sol. 129 on all types of hoods. The slam analysis generally consumes a lot of analyst's time for building the slam models, typically six hours and is very tedious and has the potential for errors. The Hood Slam PA will automatically create and perform slam analysis pre-processing tasks within HyperMesh software such as creating latch striker interface, creating seals and bumpers with CBUSH1D elements, assigning transient slam speed to the hood and will finally generate the Nastran non-linear transient (Sol.129) hood slam analysis input files. The ready to run analysis input files will be submitted to the Nastran solver and the analysis results will then be post processed using HyperView software.
Technical Paper

Robust Design of a Light Weight Flush Mount Roof Rack

2011-04-12
2011-01-1274
Roof racks are designed for carrying luggage during customers' travels. These rails need to be strong enough to be able to carry the luggage weight as well as be able to withstand aerodynamic loads that are generated when the vehicle is travelling at high speeds on highways. Traditionally, roof rail gage thickness is increased to account for these load cases (since these are manufactured by extrusion), but doing so leads to increased mass which adversely affects fuel efficiency. The current study focuses on providing the guidelines for strategically placing lightening holes and optimizing gage thickness so that the final design is robust to noise parameters and saves the most mass without adversely impacting wind noise performance while minimizing stress. The project applied Design for Six Sigma (DFSS) techniques to optimize roof rail parameters in order to improve the load carrying capacity while minimizing mass.
Technical Paper

A Statistical Approach for Correlation/Validation of Hot-Soak Terminal Temperature of a Vehicle Cabin CFD Model

2013-04-08
2013-01-0854
A Design for Six Sigma (DFSS) statistical approach is presented in this report to correlate a CFD cabin model with test results. The target is the volume-averaged hot-soak terminal temperature. The objective is to develop an effective correlation process for a simplified CFD cabin model so it can be used in practical design process. It is, however, not the objective in this report to develop the most accurate CFD cabin model that would be too expensive computationally at present to be used in routine design analysis. A 3-D CFD model of a vehicle cabin is the central part of the computer modeling in the development of automotive HVAC systems. Hot-soak terminal temperature is a thermal phenomenon in the cabin of a parked vehicle under the Sun when the overall heat transfer reaches equilibrium. It is often part of the simulation of HVAC system operation.
Technical Paper

Use of DFSS Principles to Develop an Objective Method to Assess Transient Vehicle Dynamics

2013-04-08
2013-01-0708
This paper presents subjective and objective methods for evaluating transient vehicle dynamics characteristics in four sections: (1) Definition of transient behavior in terms of four traits-agility, stability, precision, and roll support; (2) Description of subjective evaluation methods; (3) Implementation of Design for Six Sigma principles to the development of a steering robot controlled objective test for transient performance; (4) The final section of this paper uses data from simulation and road tests to demonstrate how chassis design parameters can affect transient handling performance.
Technical Paper

Optimization of Scratch Resistance for Molded in Color Interior Thermoplastic Olefin Injection Molded Plastics

2011-04-12
2011-01-0464
As customer dissatisfaction with interior trim components is tracked by the JDPowers question on “surface durability”, there is a need to increase the durability of the parts that are molded in color. In particular, door trim panel lowers are susceptible to surface damage which results in an unfavorable appearance. To address this issue, an assessment of the various factors that can affect surface durability was conducted using talc filled TPO materials in order to determine the optimum set of physical properties. The team used Design for Six Sigma (DFSS) methodology. A Taguchi orthogonal experiment was used and included control system factors of material, grain, gloss, and color. Noise factors included molding process parameters, aging, and piece to piece variation. The output was a measure of the scratch resistance of the molded plaque which was defined by a Delta L calculation.
Technical Paper

GM Approach to Chassis Based Load Management

2011-04-12
2011-01-0024
Global programs are placing demands on vehicle platforms to achieve structural durability robustness across a broader spectrum of vehicle configurations and use conditions. This robustness is optimally achieved by (a) localizing energy absorption to lower cost components, and (b) narrowing the spread in loads generated during durability events, which in turn minimizes the cost and mass impact to the vehicle platform. A generalized philosophy for conducting load optimization and for improving energy management for various types of events is presented here. Various techniques that have been employed at GM are explained by way of illustration.
Technical Paper

Lightweight MacPherson Strut Suspension Front Lower Control Arm Design Development

2011-04-12
2011-01-0562
The paper will discuss the results of a study to develop lightweight steel proof-of-concept front lower control arm (FLCA) designs that are less expensive and achieve equivalent structural performance relative to a baseline forged aluminum FLCA assembly. A current production forged aluminum OEM sedan FLCA assembly was selected as an aggressive mass target based on competitive benchmarking of vehicles of its size. CAE structural optimization methods were used to determine the initial candidate sheet steel and forged designs. Two (2) sheet steel FLCA designs and one (1) forged steel FLCA design were selected and developed to meet specified performance criteria. An iterative optimization strategy was used to minimize the mass of each design while meeting the specified stiffness, durability, extreme load, and longitudinal buckling strength requirements.
Technical Paper

Optimum Constraint Strategy for Liftgates

2011-04-12
2011-01-0766
The present study defines the functional requirements for a liftgate and the body in order to avoid rattle, squeak, and other objectionable noises. A Design For Six Sigma (DFSS) methodology was used to study the impact of various constraint components such as bumpers, wedges, and isolated strikers on functional requirements. These functional requirements include liftgate frequency, acoustic cavity frequency, and the stiffness of the liftgate body opening. It has been determined that the method of constraining the gate relative to the body opening has a strong correlation to the noise generated. The recommended functional performance targets and constraint component selection have been confirmed by actual testing on a vehicle. Recommendations for future liftgate design will be presented.
Technical Paper

Conducting Tire-Coupled (4-Post) Durability Simulations without Road Load Data Acquisition

2011-04-12
2011-01-0225
For decades, the industry standard for laboratory durability simulations has been based on reproducing quantified vehicle responses. That is, build a running vehicle, measure its responses over a variety of durability road surfaces and reproduce those responses in the laboratory for durability evaluation. To bring a vehicle to market quickly, the time between tightening the last bolt on a prototype test vehicle and starting the durability evaluation test must be minimized. A method to derive 4-Post simulator displacements without measuring or predicting vehicle responses is presented.
Technical Paper

Dimensional Quality Control of Repeated Molded Polymer Battery Cell Housings in Automotive Energy Systems

2011-04-12
2011-01-0244
Current manufacture of alternative energy sources for automobiles, such as fuel cells and lithium-ion batteries, uses repeating energy modules to achieve targeted balances of power and weight for varying types of vehicles. Specifically for lithium-ion batteries, tens to hundreds of identical plastic parts are assembled in a repeating fashion; this assembly of parts requires complex dimensional planning and high degrees of quality control. This paper will address the aspects of dimensional quality for repeated, injection molded thermoplastic battery components and will include the following: First, dimensional variation associated with thermoplastic components is considered. Sources of variation include the injection molding process, tooling or mold, lot-to-lot material differences, and varying types of environmental exposure. Second, mold tuning and cavity matching between molds for multi-cavity production will be analyzed.
Technical Paper

Development of Robust CAE Modeling Technique for Decklid Slam Analysis

2011-04-12
2011-01-0242
Engineering has continuously strived to improve the vehicle development process to achieve high quality designs and quick to launch products. The design process has to have the tools and capabilities to help ensure both quick to the market product and a flawless launch. To achieve high fidelity and robust design, mistakes and other quality issues must be addressed early in the engineering process. One way to detect problems early is to use the math based modeling and simulation techniques of the analysis group. The correlation of the actual vehicle performance to the predictive model is crucial to obtain. Without high correlation, the change management process begins to get complicated and costs start to increase exponentially. It is critical to reduce and eliminate the risk in a design up front before tooling begins to kick off. The push to help achieve a high rate of correlation has been initiated by engineering management, seeing this as an asset to the business.
Technical Paper

Measurement of Occupant Pocketing Kinematics During Whiplash Assessments

2011-04-12
2011-01-0270
This study documents a method developed for dynamically measuring occupant pocketing during various low-speed rear impact, or “whiplash” sled tests. This dynamic pocketing measurement can then be related to the various test parameters used to establish the performance rating or compliance results. Consumer metric and regulatory tests discussed within this paper as potential applications of this technique include, but are not limited to, the Insurance Institute for Highway Safety (IIHS) Low Speed Rear Impact (LSRI) rating, Federal Motor Vehicle Safety Standard (FMVSS) 202a, and European New Car Assessment Program (EURO-NCAP) whiplash rating. Example metrics are also described which may be used to assist in establishing the design position of the head restraint and optimize the balance between low-speed rear impact performance and customer comfort.
Technical Paper

Test Method for Seat Wrinkling and Bagginess

2012-04-16
2012-01-0509
This study evaluates utilizing an accelerated test method that correlates customer interaction with a vehicle seat where bagginess and wrinkling is produced. The evaluation includes correlation from warranty returns as well as test vehicle results for test verification. Consumer metrics will be discussed within this paper with respect to potential application of this test method, including but not limited to JD Power ratings. The intent of the test method is to aid in establishing appropriate design parameters of the seat trim covers and to incorporate appropriate design measures such as tie downs and lamination. This test procedure was utilized in a Design for Six Sigma (DFSS) project as an aid in optimizing seat parameters influencing trim cover performance using a Design of Experiment approach.
Technical Paper

Characterization of Mechanical Behavior of Thermoplastics with Local Deformation Measurement

2012-04-16
2012-01-0040
In quasi-static tension and compression tests of thermoplastics, full-field strain distribution on the gage section of the specimen can be captured using the two-dimensional digital image correlation method. By loading the test specimens made of a talc-filled and impact-modified polypropylene up to tensile failure and large compressive strains, this study has revealed that inhomogeneous deformation within the gage section occurs quite early for both test types. This leads to the challenge of characterizing the mechanical properties - some mechanical properties such as stress-strain relationship and fracture strain could depend on the measured section length and location. To study this problem, the true stress versus true strain curves determined locally in different regions within the gage length are compared.
Technical Paper

Robust Analytical Methodology for Hood Overslam Travel using a DFSS Approach

2013-04-08
2013-01-1388
Developing a robust model that can simulate all real world conditions a vehicle can experience can be extremely difficult to predict. When working through the engineering process, Computer Aided Engineers (CAE) traditionally set modeling parameters and conditions to a nominal setting. This is done to simplify the models so that it avoided inputting too much tedious details into the system and wasting so much engineering time preparing the work. It was soon realized that this strategy did not capture all the possible conditions a hood on a vehicle could experience. There was a need to develop a formal approach and method to correlate an analysis model to real world conditions. The Design for Six Sigma (DFSS) process was utilized to develop robustness in the techniques used to accurately understand the vehicle environment. The DFSS process is normally used to design and develop robustness into physical parts.
Journal Article

Evaluation of Prog-Die Wear Properties on Bare DP1180 Steel

2017-03-28
2017-01-0310
The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
Journal Article

Determination of Weld Nugget Size Using an Inverse Engineering Technique

2013-04-08
2013-01-1374
In today's light-weight vehicles, the strength of spot welds plays an important role in overall product integrity, reliability and customer satisfaction. Naturally, there is a need for a quick and reliable technique to inspect the quality of the welds. In the past, the primary quality control tests for detecting weld defects are the destructive chisel test and peel test [1]. The non-destructive evaluation (NDE) method currently used in industry is based on ultrasonic inspection [2, 3, 4]. The technique is not always successful in evaluating the nugget size, nor is it effective in detecting the so-called “cold” or “stick” welds. Therefore, it is necessary to develop a precise and reliable noncontact NDE method for spot welds. There have been numerous studies in predicting the weld nugget size by considering the spot-weld process [5, 6].
Journal Article

Structural Evaluation of an Experimental Aluminum/Magnesium Decklid

2011-04-12
2011-01-0075
Experimental decklids for the Cadillac STS sedan were made with Al AA5083 sheet outer panels and Mg AZ31B sheet inner panels using regular-production forming processes and hardware. Joining and coating processes were developed to accommodate the unique properties of Mg. Assembled decklids were evaluated for dimensional accuracy, slam durability, and impact response. The assemblies performed very well in these tests. Explicit and implicit finite element simulations of decklids were conducted, and showed that the Al/Mg decklids have good stiffness and strength characteristics. These results suggest the feasibility of using Mg sheet closure panels from a structural perspective.
X