Refine Your Search

Topic

Author

Search Results

Technical Paper

Improving Vehicle-Trailer System Dynamic Stability through Damper Tuning

2011-04-12
2011-01-0978
There are generally two types of directional instability that are associated with a vehicle/trailer combination system. The first is typically referred to as static or divergent instability (jack-knifing), which is a common cause of highway accidents. The second can be called dynamic or oscillatory instability (“snaking” or “fish-tailing”). This type of oscillation occurs due to inherently low system damping at higher speeds [1]. It is sensitive to system parameters and operating conditions and may be excited by various disturbances, such as side wind or abrupt steering inputs. Controlling trailer yaw oscillation can be challenging, especially in markets where small passenger cars are commonly used to tow relatively massive trailers at highway speeds with low hitch loads. This study focuses on the second of the two aforementioned types of instability - dynamic or oscillatory instability.
Technical Paper

Reducing Disturbances Caused by Reductions in Regenerative Brake Torque

2011-04-12
2011-01-0972
This paper presents a method to reduce the number of occurrences of vehicle deceleration disturbances due to the reduction of regenerative braking in the presence of wheel slip. Usually, regenerative braking is disabled when wheel slip is detected in order to allow the ABS system to efficiently cycle brake pressure. When this happens, the vehicle will momentarily lose deceleration due to the reduction in both regenerative brake torque and friction brake pressure, until friction brake pressure is reapplied. Some ABS activations can be defined as nuisance events, in which full ABS control is not necessary and is exited rapidly; for example, a vehicle driving through a pothole. In these cases it is desirable to continue regenerative braking in order to keep vehicle deceleration as smooth as possible.
Technical Paper

Hardware in the Loop Simulation - Economic Commission Europe Category C Brake Assist System

2011-04-12
2011-01-0955
Brake Assist System (BAS) requirements have been established by the Economic Commission for Europe (ECE) in R13H. Electronic Stability Control (ESC) systems typically have the value added function of Panic Brake Assist (PBA) which is defined as a Category C (sensitive to multiple criteria) Brake Assist System. PBA is designed to force the vehicle into Antilock Brake System (ABS) and to maintain ABS control when the driver spikes the brake pedal and then temporarily reduces brake pedal force before reasserting more brake pedal force. ECE test protocol requires the use of brake ramp applications to define the mean acceleration force (maF) curve which is used to define the brake pedal force where ABS activates (FABS). After completing the brake ramp application test maneuvers and completing the data processing to define the maF curve, FABS, upper, and FABS, lower, the test driver then proceeds to run the panic brake assist portion of the test.
Technical Paper

Multi-Disciplinary Analyses for Brake Fluid Temperature Evaluation

2013-04-08
2013-01-0635
During braking events, a brake corner sustains high brake torque, generating a large amount of heat in the process. This is most significant during mountain descent events and vehicle race track events. The brake thermal events not only reduce brake friction coefficient and lining life, but also produce elevated brake fluid temperature. Traditionally, brake hardware testing is warranted to evaluate brake fluid temperature for high speed flat track and mountain descent. These tests are costly and time-consuming. A CAE process to predict brake fluid temperature early in the vehicle development process before hardware exists, and to reduce and to replace testing will greatly benefit the vehicle development process. To this end, multiple analyses can be run. The heat transfer coefficients and cooling coefficients were evaluated from relevant CFD analyses.
Technical Paper

Cascaded Dual Extended Kalman Filter for Combined Vehicle State Estimation and Parameter Identification

2013-04-08
2013-01-0691
This paper proposes a model-based “Cascaded Dual Extended Kalman Filter” (CDEKF) for combined vehicle state estimation, namely, tire vertical forces and parameter identification. A sensitivity analysis is first carried out to recognize the vehicle inertial parameters that have significant effects on tire normal forces. Next, the combined estimation process is separated in two components. The first component is designed to identify the vehicle mass and estimate the longitudinal forces while the second component identifies the location of center of gravity and estimates the tire normal forces. A Dual extended Kalman filter is designed for each component for combined state estimation and parameter identification. Simulation results verify that the proposed method can precisely estimate the tire normal forces and accurately identify the inertial parameters.
Technical Paper

Modeling Dynamic Stiffness of Rubber Isolators

2011-04-12
2011-01-0492
Rubber isolators and bushings are very important components for vehicle performance. However, one often finds it is difficult to get the dynamic properties to be readily used in CAE analysis, either from suppliers or from OEM's own test labs. In this paper, the author provides an analytical method to obtain the dynamic stiffness of an exhaust isolator, using ABAQUS and iSight, with tested or targeted isolator static stiffness information. The analysis contains two steps. The first step is to select the (rubber/EPDM) material properties for the FE isolator model by matching the static stiffness with either the targeted spring rate (linear or nonlinear) or the (tested) load / deflection curve. The second step is to perform dynamic analysis on the statically “validated” FE isolator model to obtain its dynamic properties.
Technical Paper

Co-Development of Chevy Volt Tire Properties to Balance Performance and Electric Vehicle Range

2011-04-12
2011-01-0096
As an innovative electric vehicle with some new approaches to energy usage and vehicle performance balance, the Chevy Volt required a special relationship between the OEM and tire supplier community. This paper details this relationship and how advanced tools and technology were leveraged between OEM and supplier to achieve tire component and overall vehicle performance results.
Technical Paper

Relative Torque Estimation on Transmission Output Shaft with Speed Sensors

2011-04-12
2011-01-0392
Automobile drivers/passengers perceive automatic transmission (AT) shift quality through the torque transferred by transmission output shaft, so that torque regulation is critical in transmission shift control and etc. However, since a physical torque sensor is expensive, current shift control in AT is usually achieved by tracking a turbine speed profile due to the lack of the transmission output torque information. A direct torque feedback has long been desired for transmission shift control enhancement. This paper addresses a “virtual” torque sensor (VTS) algorithm that can provide an accurate estimate on the torque variation in the vehicle transmission output shaft using (existing) speed sensors. We have developed the algorithm using both the transmission output speed sensor and anti-lock braking system speed sensors. Practical solutions are provided to enhance the accuracy of the algorithm. The algorithm has been successfully implemented on both FWD and RWD vehicles.
Technical Paper

Air Suspension System Model and Optimization

2011-04-12
2011-01-0067
An air suspension system can consist of many different components. These components include an air compressor, air springs, pneumatic solenoid valves, height sensors, electronic control unit, air reservoir, air lines, pressure sensor, temperature sensor, etc. The system could be designed as a 2-corner rear air suspension or a 4-corner air suspension. In this paper, the pneumatic models of air suspension systems are presented. The suspension system models are implemented in AmeSim. The suspension controls are implemented using Matlab/Simulink. The compressor was modeled using the standard AmeSim element with known mass flow rate as a function of pressure ratio. Air lines were modeled using a friction submodel of pneumatic pipe and control (isolation) valves are modeled using 2 position, 2 port pneumatic servo valves. The air spring is modeled as a single pneumatic chamber, single rod jack with spring assistance to account for spring nonlinearities.
Technical Paper

GM Approach to Chassis Based Load Management

2011-04-12
2011-01-0024
Global programs are placing demands on vehicle platforms to achieve structural durability robustness across a broader spectrum of vehicle configurations and use conditions. This robustness is optimally achieved by (a) localizing energy absorption to lower cost components, and (b) narrowing the spread in loads generated during durability events, which in turn minimizes the cost and mass impact to the vehicle platform. A generalized philosophy for conducting load optimization and for improving energy management for various types of events is presented here. Various techniques that have been employed at GM are explained by way of illustration.
Technical Paper

Wrought Magnesium Components for Automotive Chassis Applications

2011-04-12
2011-01-0077
Automotive structural components are exposed to high loads, impact situations and corrosion. In addition, there may be temperature excursions that introduce creep as well as reduced modulus (stiffness). These issues have limited the use of light metals in automotive structural applications primarily to aluminum alloys, and primarily to cast wheels and knuckles (only a few of which are forged), cast brake calipers, and cast control arms. This paper reports on research performed at Chongqing University, Chongqing China, under the auspices of General Motors engineering and directed by the first author, to develop a protocol that uses wrought magnesium in control arms. The goal was to produce a chassis part that could provide the same engineering function as current cast aluminum applications; and since magnesium is 33% less dense than aluminum, would be lighter.
Technical Paper

Virtual Road Load Data Acquisition for Twist Axle Rear Suspension

2011-04-12
2011-01-0026
The twist axle has highly complicated load paths because of its multiple functions of suspension components. This nature of the twist axle suspension makes the fixed reacted multi-axial suspension test more sophisticated than for other independent suspensions. GM has used Virtual Road Load Data Acquisition (vRLDA) for laboratory tests in the past, but this is the first application of vRLDA for a twist axle multi-axial suspension durability test. In order to utilize vRLDA data for the test input, a new approach to 8 channel multi-axial suspension durability test development was proposed for a twist axle rear suspension. vRLDA for a GM vehicle with twist axle rear suspension was performed and briefly discussed. Instead of using strain data from the twist axle for correlation channels, inboard channels such as shock tower vertical and trailing arm forces were used in the test development.
Technical Paper

Small Amplitude Torsional Steering Column Dynamics on Smooth Roads: In-Vehicle Effects and Internal Sources

2011-04-12
2011-01-0560
Internally excited torsional steering wheel vibrations at frequencies near 8-22 Hz on smooth roads can produce driver disturbances, commonly described as “SHAKE”. These vibrations are primarily excited by the rotating front suspension corners and are periodic in the rotational frequencies of the tire-wheel assemblies. The combination of vehicular dynamic amplification originating in dominant suspension and steering system vibratory modes, and a sufficiently large 1st harmonic non-uniformity excitation of the rotating corner components, can result in periodic vibrations exceeding thresholds of disturbance. Controlling the periodic non-uniformity excitation through individual component requirements (e.g., wheel imbalance, tire force variation, wheel runout, concentric piloting of wheel on hub) is difficult since the desired upper limits of individual component requirements for vibration-free performance are typically beyond industry capability.
Technical Paper

Dual Rate Jounce Bumper Design

2011-04-12
2011-01-0791
Jounce bumpers are the primary component by which vertical wheel travel is limited in our suspensions. Typically, the jounce bumper is composed of closed or open cell urethane material, which has relatively low stiffness at initial compression with highly progressive stiffness at full compression. Due to this highly progressive stiffness at high load, peak loads are extremely sensitive to changes in input energy (affected by road surface, tire size, tire pressure, etc.) A “Dual Rate Jounce Bumper” concept is described that reduces this sensitivity. Additionally, various mechanizations of the concept are described as well as the specific program benefits, where applicable.
Technical Paper

Analytical Evaluation of Propulsion System Architectures for Future Urban Vehicles

2011-04-12
2011-01-0861
Today, nearly half of the world population lives in urban areas. As the world population continues to migrate to urban areas for increased economic opportunities, addressing personal mobility challenges such as air pollution, Greenhouse Gases (GHGs) and traffic congestion in these regions will become even a greater challenge especially in rapidly growing nations. Road transportation is a major source of air pollution in urban areas causing numerous health concerns. Improvements in automobile technology over the past several decades have resulted in reducing conventional vehicle tailpipe emissions to exceptionally low levels. This transformation has been attained mainly through advancements in engine and transmission technologies and through partial electrification of vehicles. However, the technological advancements made so far alone will not be able to mitigate the issues due to increasing GHGs and air pollution in urban areas.
Technical Paper

Effect of Flow Forces on a Flow Control Variable Force Solenoid

2011-04-12
2011-01-0394
A system level analysis was carried out on the effect of flow forces on a flow control variable force solenoid (VFS) used in automatic transmissions. Classic flow force model was reviewed as a function of the pressure difference and the solenoid current. A force balance analysis was conducted on the spool valve in the VFS, in order to study the relationship among the control current, flow forces, spring forces, and flow area. Flow bench testing was used to characterize a specific flow control VFS by both the pressure drop and solenoid current, in forward and reverse flow directions. The behavior of flow control VFS valve is significantly affected by flow forces. A sub-system level model was thus created to predict the steady-state and dynamic behavior of the flow VFS valve, which can be used in a transmission system level analysis. The modeling results were compared against experimental data to show the validity of the methodology.
Technical Paper

An Approach to the Safety Design and Development of a Brake-by-Wire Control System

2011-04-12
2011-01-0212
The increasing usage of brake-by-wire systems in the automotive industry has provided manufacturers with the opportunity to improve both vehicle and manufacturing efficiency. The replacement of traditional mechanical and hydraulic control systems with electronic control devices presents different potential vehicle-level safety hazards than those presented by conventional braking systems. The proper design, development, and integration of a brake-by-wire control system requires that hazards are reasonably prevented or mitigated in order to maximize the safety of the vehicle operator, occupant(s), and passers-by.
Technical Paper

Making a Regional Belt Drive Rack Electric Power Steering System Global

2017-11-07
2017-36-0188
An actual trend in the automotive industry is to have global products in order to have economy of scale. This paper presents how a Belt Drive Rack EPS developed for the North American market had to be modified in order to be assembled in a Vehicle sold all around the world. Main technical challenges for achieving that goal were generated from different Architectures, whether electrical or mechanical, used in each vehicle, Packaging issues and Regional Requirements. Main features affected are Database Configuration, Electromagnetic Compatibility, Smooth Road Shake mitigation and Pull Compensation.
Journal Article

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-04-16
2012-01-1008
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium-size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Journal Article

Development of General Motors' eAssist Powertrain

2012-04-16
2012-01-1039
General Motors' (GM) eAssist powertrain builds upon the knowledge and experience gained from GM's first generation 36Volt Belt-Alternator-Starter (BAS) system introduced on the Saturn VUE Green Line in 2006. Extensive architectural trade studies were conducted to define the eAssist system. The resulting architecture delivers approximately three times the peak electric boost and regenerative braking capability of 36V BAS. Key elements include a water-cooled induction motor/generator (MG), an accessory drive with a coupled dual tensioner system, air cooled power electronics integrated with a 115V lithium-ion battery pack, a direct-injection 2.4 liter 4-cylinder gasoline engine, and a modified 6-speed automatic transmission. The torque-based control system of the eAssist powertrain was designed to be fully integrated with GM's corporate common electrical and controls architectures, enabling the potential for broad application across GM's global product portfolio.
X