Refine Your Search




Search Results


Monitoring NO2 Production of a Diesel Oxidation Catalyst

A combination of laboratory reactor measurements and vehicle FTP testing has been combined to demonstrate a method for diagnosing the formation of NO2 from a diesel oxidation catalyst (DOC). Using small cores from a production DOC and simulated diesel exhaust, the laboratory reactor experiments are used to support a model for DOC chemical reaction kinetics. The model we propose shows that the ability to produce NO2 is chemically linked to the ability of the catalyst to oxidize hydrocarbon (HC). For thermally damaged DOCs, loss of the HC oxidation function is simultaneous with loss of the NO2 production function. Since HC oxidation is the source of heat generated in the DOC under regeneration conditions, we conclude that a diagnostic of the DOC exotherm is able to detect the failure of the DOC to produce NO2. Vehicle emissions data from a 6.6 L Duramax HD pick-up with DOC of various levels of thermal degradation is provided to support the diagnostic concept.

High Load HCCI Operation Using Different Valving Strategies in a Naturally-Aspirated Gasoline HCCI Engine

This session focuses on kinetically controlled combustion. Experimental and simulation studies pertaining to various means of controlling combustion are welcome. Examples are research studies dealing with temperature and composition distribution inside the cylinder and their impact on heat release process. Studies clarifying the role of fuel physical and chemical properties in autoignition are also welcome. Presenter Hanho Yun, General Motors Company

Technical Keynote: Leading in Crazy Times

Leading during normal times is plenty challenging. Leading in crazy times requires extra understanding and skill. This presentation explores how you and your team can be your best, regardless of what craziness may be going on around your organization, your team members, and you. Presenter Theresa Rich, General Motors Company

OBD Challenges for Plug In Hybrid Electric Vehicles

Plug-In Hybrid and Extended Range Electric Vehicle's have quickly become the focus of many OEM's and suppliers. Existing regulations and test procedures did not anticipate this rapid adoption of this new technology, resulting in many product development challenges. The lack of clear requirements is further complicated by CARBs consideration of CO2 inclusion in their next light duty OBD regulation. This presentation provides an overview of the regulatory requirements for OBD systems on hybrid vehicles that intend to certify in California. Near term challenges for EREV?s and PHEV?s are discussed, including concerns with the existing denominator and warm-up cycle calculations. Some proposals are made to address these concerns. Presenter Andrew Zettel, General Motors Company

Worldwide OBD

OBD system requirements were first developed by the California Air Resources Board, the U.S. Environmental Protection Agency, and the European Commission. New OBD requirements should be as consistent as possible with existing requirements to maximize reliability and to minimize system complexity, proliferation of configurations, and consumer cost. New OBD requirements from around the world are briefly reviewed and most are consistent with the original U.S. and European requirements. Worldwide OBD requirements are being further harmonized under the United Nations, Economic Commission for Europe, World Forum for Harmonization of Vehicle Regulations (WP29). Presenter David H. Ferris, General Motors Company
Technical Paper

Effectiveness of Engine Calibration Techniques to Reduce Off-Cycle Emissions

Engine calibrations are inexpensive methods for reducing exhaust emissions since only software modifications are required. The California Air Resources Board staff conducted a test program to investigate the effectiveness of engine calibration techniques to reduce the newly regulated aggressive driving exhaust emissions or “off-cycle” emissions. Consisting of stoichiometric and rich “bias” calibration, these engine calibration techniques were applied to fourteen late-model vehicles. The engine calibration techniques reduced the off-cycle emissions substantially on most vehicles. To comply with the proposed off-cycle standards for California low-emission vehicles and ultra-low-emission vehicles, these techniques will be a cost-effective method to reduce off-cycle emissions.
Technical Paper

California's Revised Heavy-Duty Vehicle Smoke and Tampering Inspection Program

Heavy-duty vehicles account for approximately 30 percent of the oxides of nitrogen (NOx) and 65 percent of the particulate matter (PM) emissions from the entire California on-road fleet, despite the fact that these vehicles comprise only 2 percent of the same. To meet legislative mandates to reduce excess smoke emissions from in-use heavy-duty diesel-powered vehicles, the Air Resources Board (ARB or Board) adopted, in December 1997, amendments to the regulations governing the operation and enforcement of the Heavy-Duty Vehicle Inspection Program (HDVIP or the “roadside” program) and the Periodic Smoke Inspection Program (PSIP or the “fleet” program). The initial roadside program was adopted in November 1990 in response to Senate Bill (SB) 1997 (stat. 1988, ch. 1544, Presley), and enforced from 1991 to 1993. It was suspended in October 1993, when the Board redirected staff to investigate reformulated fuels issues.
Technical Paper

A Study of the Relative Benefits of On-Board Diagnostics and Inspection and Maintenance in California

California is considering adopting an enhanced Inspection and Maintenance (I&M) program (commonly referred to as Smog Check II) beginning with the 1996 calendar year. This program will utilize a targeting scheme to identify vehicles likely to be high emitters and send these vehicles to centralized testing facilities. The remaining fleet of vehicles will be sent to decentralized testing facilities. At these facilities, vehicles will be subjected to steady state loaded mode dynamometer based tests. Simultaneously, all 1996 and later model year passenger cars, light- and medium-duty trucks sold in California will be equipped with an On-Board Diagnostic (OBDII) system. This system is designed to monitor critical emission related components and activate a Malfunction Indicator Light (MIL) when a failure or a drift in calibration is likely to cause emissions to exceed 1.5 times the vehicle certification standards.
Technical Paper

Comparison of the Exhaust Emissions from California Phase 1 (without oxygenates) and Phase 2 (with oxygenates) Fuel:A Case Study of 11 Passenger Vehicles

While most studies addressing the fuel effects are based on the Federal Test Procedure (FTP), there are limited studies investigating the fuel effects outside FTP test conditions. In this study, we investigated the differences in exhaust emissions from California Phase 1 to Phase 2 reformulated gasoline over a wide range of speed and ambient temperatures. Eleven catalyst equipped passenger vehicles were tested. The vehicles were comprised of three fuel delivery system configurations, namely, three from carburetor (CARBU), three from throttle body injection (TBI), and five from multi-port fuel injection (MPFI) group. Each vehicle was given 60 tests with the combination of two reformulated fuels: Phase 1 (without oxygenates) and Phase 2 (with oxygenates), three temperatures (50, 75, and 100 °F), and ten speed cycles (average speed ranges from 4 mph to 65 mph).
Technical Paper

Formaldehyde Emission Control Technology for Methanol-Fueled Vehicles: Catalyst Selection

The use of methanol as a “clean fuel” appears to be a viable approach to reduce air pollution. However, concern has been expressed about potentially high formaldehyde emissions from stoichiometrically operated light-duty vehicles. This paper presents results from an emission test program conducted for the California Air Resources Board (CARB) and the South Coast Air Quality Management District (SCAQMD) to identify and evaluate advanced catalyst technology to reduce formaldehyde emissions without compromising regulated emission control. An earlier paper presented the results of evaluating eighteen different catalyst systems on a hybrid methanol-fueled test vehicle. (1)* This paper discusses the optimization of three of these catalyst systems on four current technology methanol-fueled vehicles. Emission measurements were conducted for formaldehyde, nonmethane organic gases (NMOG), methanol, carbon monoxide, and oxides of nitrogen emissions.
Technical Paper

Overview of On-Board Diagnostic Systems Used on 1991 California Vehicles

The California Air Resources Board requires that new California vehicles be equipped with on-board diagnostic (OBD) systems. Starting with the 1988 models, these systems were required on new passenger cars, light-duty trucks and medium-duty vehicles equipped with three-way catalysts and feed-back fuel controls. The purpose of the OBD system is to expedite the proper repair of emission-related malfunctions and, thus, reduce vehicle emissions. When malfunctons are detected, a malfunction indicator light (MIL) mounted in the dash panel illuminates cautioning the vehicle operator that a repair is needed. Also, a fault code is stored in the OBD computer memory. When the vehicle is brought to a repair facility, the fault code provides the mechanic with the likely areas of malfunction for repairing the vehicle. After the repair is performed, the fault code is cleared, the MIL is extinguished, and the OBD system will subsequently confirm if the proper repair has been performed.
Technical Paper

The Effect of Gasoline Aromatics Content on Exhaust Emissions: A Cooperative Test Program

A cooperative vehicle exhaust emissions test program was conducted by the California Air Resources Board and Chevron Research and Technology Company. The focus of the program was to determine the effect of aromatics content on nitrogen oxides (NOx) emissions. The program consisted of testing nine vehicles on three different fuels. The fuels ranged in aromatics content from 10% to 30%.* Other fuel properties were held as constant as possible. The tests were conducted in two different laboratories. In addition to the measurement of criteria emissions (hydrocarbons, carbon monoxide, and NOx), some of the hydrocarbon emissions were speciated and a reactivity of the exhaust was calculated. Only slight changes in the exhaust emissions and reactivity were observed for a change in aromatics content from 30% to 10%.
Technical Paper

Trends in Emissions Control Technologies for 1983-1987 Model-Year California-Certified Light-Duty Vehicles

An analysis of data provided by-vehicle manufacturers during the California emissions certification process has been performed for 1983-1987 model-year light-duty vehicles. The major change in emission control system design was a decrease in the use of secondary air injection which was used on 75% of 1983 vehicles, but only 50% of 1986 and 1987 vehicles. Exhaust gas recirculation was used on 90% of vehicles from 1983-1987. The sales-weighted certification emission levels of gasoline-powered light-duty vehicles were 0.23 g/mile HC, 3.1 g/mile CO, and 0.5 g/mile NOx in 1983. Levels of HC and CO were approximately constant at 0.20 g/mile and 2.7 g/mile, respectively, from 1984-1987 with NOx levels decreasing to 0.4 g/mile for 1987.
Technical Paper

Comparison of Exhaust Emissions from a Vehicle Fueled with Methanol-Containing Additives for Flame Luminosity

Two additive blends proposed for improving the flame luminosity in neat methanol fuel were investigated to determine the effect of these additives on the exhaust emissions in a dual-fueled Volkswagen Jetta. The two blends contained 4 percent toluene plus 2 percent indan in methanol and 5 percent cyclopentene plus 5 percent indan in methanol. Each blend was tested for regulated and unregulated emissions as well as a speciation of the exhaust hydrocarbons resulting from use of each fuel. The vehicle exhaust emissions from these two fuel blends were compared to the Coordinating Research Council Auto-Oil national average gasoline (RF-A), M100, and M85 blended from RF-A. Carter Maximum Incremental Reactivity Factors were applied to the speciated hydrocarbon emission results to determine the potential ozone formation for each fuel. Toxic emissions as defined in the 1990 Clean Air Act were also compared for each fuel.
Technical Paper

A Comparison of Private Garage and Centralized I&M Programs

A fundamental decision to be made in developing a motor vehicle Inspection and Maintenance (I&M) program is whether a “centralized” or “private garage” program will be used. Under the centralized approach, the state or a state contractor operates a network of single purpose “Inspection Centers” to inspect motor vehicles before the completion of the annual registration renewal process. After any repairs necessary to correct vehicles with excessive emissions are made at a facility of the owner's choosing, the vehicle must pass a reinspection at the Inspection Center. Under the private garage (decentralized) approach, both inspections and repairs are conducted by private repair facilities licensed by the state. A comparison of a centralized I&M program and a private garage I&M program currently operating in California indicates that the centralized program is providing over ten times greater emissions reductions.
Technical Paper

A Comparison of Heavy-Duty Diesel Truck Engine Smoke Opacities at High Altitude and at Sea Level

A study was conducted by the California Air Resources Board to investigate the effects that altitude has on in-use heavy-duty diesel truck smoke opacities. The understanding of these effects may allow for the establishment of a high altitude opacity standard for diesel trucks operating at or above altitudes of 5800 feet. During a three-week study, 170 heavy-duty diesel trucks were tested at an altitude of 5,820 feet using a test procedure consisting of rolling acceleration and snap idle tests. Eighty-four (84) of these trucks were recaptured and retested at an altitude of 125 feet. Results from a regression analysis indicates that, on average, truck smoke opacities increased by 23 opacity points when tested at altitudes near 6000 feet. Possible high altitude cutpoints and failure rates are also discussed.
Technical Paper

California's Heavy-Duty Vehicle Smoke and Tampering Inspection Program

Emissions from heavy-duty vehicles are a major contributor to California's air quality problems. Emissions from these vehicles account for approximately 30% of the nitrogen oxide and 75% of the particulate matter emissions from the entire on-road vehicle fleet. Additionally, excessive exhaust smoke from in-use heavy-duty diesel vehicles is a target of numerous public complaints. In response to these concerns, California has adopted an in-use Heavy-Duty Vehicle Smoke and Tampering Inspection Program (HDVIP) designed to significantly reduce emissions from these vehicles. Pending promulgation of HDVIP regulations, vehicles falling prescribed test procedures and emission standards will be issued citations. These citations mandate expedient repair of the vehicle and carry civil penalties ranging from $300 to $1800. Failure to clear citations can result in the vehicle being removed from service.